Spatial and temporal analysis of the mid-summer dry spells for the summer rainfall region of South Africa
DOI:
https://doi.org/10.17159/wsa/2021.v47.i1.9447Keywords:
pentad rainfall, mid-summer, dry spells, Markov chain model, South AfricaAbstract
South Africa is frequently subjected to severe droughts and dry spells during the rainy season. As such, rainfall is one of the most significant factors limiting dryland crop production in South Africa. The mid-summer period is particularly important for agriculture since a lack of rain during this period negatively affects crop yields. Dry spell frequency analyses are used to investigate the impacts of sub-seasonal rainfall variability on crop yield, since seasonal rainfall totals alone do not explain the relationship between rainfall and crop yields. This study investigated the spatial and temporal occurrences of the mid-summer dry spells based on magnitude, length and time of occurrence in the major maize growing areas of the summer rainfall region of South Africa. Three thresholds of 5 mm, 10 mm, and 15 mm total rainfall for a pentad were used for the analysis of dry spells. Dry spell analysis showed that dry pentads occur during mid-summer with differing intensity, duration and frequency across the summer rainfall region. Annual frequency of dry pentads for the mid-summer period ranged between 0 and 4 pentads for the 5 mm threshold and 1 to 7 for the 10 mm and 15 mm thresholds. The non-parametric Mann-Kendall trend analysis of the dry pentads indicates that there is no significant trend in the frequency of dry spells at a 95% confidence level. The initial and conditional probabilities of getting a dry spell using the Markov chain model also showed that there is a 32% to 80% probability that a single pentad will be dry using the 15 mm threshold. There is a 5% to 48% probability of experiencing two consecutive dry pentads and 1% to 29% probability of getting three consecutive dry pentads. The duration and intensity of dry spells, as well as the Markov chain probabilities, showed a decrease in dry spells from west to east of the maize-growing areas of the summer rainfall region of South Africa.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2021 MG Mengistu, C Olivier, JO Botai, AM Adeola, S Daniel
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.