Accelerated phosphorus removal using sulfate-coated expanded vermiculite
DOI:
https://doi.org/10.17159/wsa/2020.v46.i4.9075Keywords:
vermiculite, sulfuric acid, floating adsorbent, adsorption, exfoliation, phosphorusAbstract
This study evaluated whether phosphorus in an aqueous solution can be effectively adsorbed and removed by sulfuric acid (SA)-coated vermiculite (SCV), which was synthetized by heating a mixture of expanded vermiculite (EV) and SA at 300°C. Phosphorus was removed from the aqueous solution and removal characteristics were evaluated by batch kinetic, batch adsorption, and column tests. The phosphate removal rates (h-1) for 1, 2.5, 5, 7.5, 12.5, and 25 g∙L-1 of SCV were 0.00015, 0.0011, 0.0044, 0.0087, 0.0648, and 0.5002, respectively. The Qmax of the Langmuir model and the partition coefficients of the linear and Freundlich models were 8.92 mg∙g-1, 0.65 L∙g-1, and 4.60 L∙g-1 (1/n = 0.354), respectively. The equilibrium phosphorus adsorptions (qe) were 7.47, 14.69, and 19.53 mg∙g-1 at initial concentrations of 10, 25, and 50 mg∙L-1, respectively. These results show that SCV can efficiently adsorb phosphorus in an aqueous solution.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Taeyoon Lee
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.