Groundwater contaminant fluctuation at a landfill: a case study of the Coastal Park Landfill, Cape Town
DOI:
https://doi.org/10.17159/wsa/2024.v50.i1.4053Keywords:
landfill groundwater, sampling schedules, groundwater pollution lagAbstract
Rainfall has been shown to be the main cause of elevated nutrient pollution in groundwater beneath landfills. However, groundwater monitoring is often based on predetermined schedules without considering rainfall patterns. This study examined how rainfall patterns affect fluctuations in groundwater quality at the Coastal Park landfill in Cape Town, South Africa, and the relevance of current groundwater sampling schedules. Boreholes upstream and downstream of two large waste cells, one lined and the other unlined, were monitored for 15 weeks during the onset of the rainy season to detect changes in the groundwater level, pH, conductivity, dissolved oxygen, ammonia, nitrate, and phosphate. Rainfall patterns strongly affected the groundwater parameters, with widely varying fluctuation patterns and lag times. Conductivity peaked downstream of the lined cell 10 weeks later than at the unlined cell, with widely different fluctuation patterns (R2 = 0.36). Ammonia peaked downstream of both the unlined and lined cells well before the early rains, with very similar fluctuation patterns (R2 = 0.97), although it peaked 6 times higher in the unlined cell. Nitrate peaked at Weeks 2 to 4 downstream of the unlined and the lined cell, with a weak correlation (R2 = 0.56). A shorter nitrate peak and a net decrease throughout the rainy season were observed downstream of the lined cell. Phosphate showed a brief, multi-fold increase at Week 3 downstream of both the unlined and lined cells, displaying pH-induced mobilisation and a very strong correlation (R2 = 0.99) between these locations. Lag times and fluctuation patterns varied depending on the presence of liners, and rainfall patterns. Therefore, the low frequency sampling required by many South African landfill waste management permits and licences cannot identify pollutant peak concentrations or describe their trends, and high frequency sampling should be considered.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 M Baderoon, K Winter
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.