Impacts of fish on phosphorus budget dynamics of some SA reservoirs: evaluating prospects of ‘bottom up’ phosphorus reduction in eutrophic systems through fish removal (biomanipulation)

Authors

  • RC Hart School of Life Sciences (Pietermaritzburg Campus), University of KwaZulu-Natal, Private Bag X01, Scottsville, 3201, South Africa
  • WR Harding DH Environmental Consulting (Pty) Ltd, Somerset West, South Africa

DOI:

https://doi.org/10.4314/wsa.v41i4.01

Keywords:

biomanipulation, biomass sinks, bioturbation, eutrophication management, excretion, fish, phosphorus, recycling, reservoir ecosystems

Abstract

Data on fish standing stocks in 7 South African reservoirs were used to assess prospects of reducing in-lake amounts of total phosphorus (TP) through remedial biomanipulation – the removal of fish to deplete internal stocks of biomass-incorporated TP and especially to restrict enhancement of TP availability through internal ‘bottom up’ recycling by fish. Literature-derived conversion functions were used to estimate the quantity of TP stored in fish biomass, recycled by fish through excretion, and released from bottom sediments through carp and catfish bioturbation. This provided a quasi mass-balance assessment of these contributory influences of fish on TP budgets of reservoirs ranging from mesotrophy to hypertrophy in trophic status (annual mean TP levels of 0.04–0.51 mg/ℓ). Absolute contributions of fish were inevitably related directly to reservoir-specific fish stock abundance, both total-fish and coarse-fish biomass levels which increased with trophic status, generating parallel absolute increases in TP sinks and internal TP loading fluxes. On overall average, total fish stock sequestered 2.2 kg TP/ha in biomass, recycled 13.8 kg TP/ha/yr through excretion, and mobilized 8.0 kg TP/ha/yr through sediment bioturbation. Average values relative to external loadings in 5 reservoirs amounted to 3.8% (biomass), 22.8% (excretion) and 11.8% (bioturbation), totalling 38.4%. Most pertinently, the relative importance of fish in reservoir TP budgets declined progressively with rising trophic status, with corresponding averages less than half (1.4, 8.7 and 5.4%, total = 15.4%) in 3 hypertrophic reservoirs (> 0.10 mg TP/ℓ). While total fish eradication plausibly reduces average internal phosphorus by some 40% relative to external load, the corresponding average reduction in hypertrophic reservoirs in greatest need of nutrient reduction is far less (~ 15%). ‘Bottom-up’ bioremediation accordingly offers little help in the management of nutrient-enriched reservoirs, and is essentially futile where high external nutrient loading persists.

Downloads

Download data is not yet available.

Downloads

Published

2015-06-25

Issue

Section

Research paper

How to Cite

RC Hart and WR Harding (2015) “Impacts of fish on phosphorus budget dynamics of some SA reservoirs: evaluating prospects of ‘bottom up’ phosphorus reduction in eutrophic systems through fish removal (biomanipulation)”, Water SA, 41(4 July). doi:10.4314/wsa.v41i4.01.