Optimum reliable operation of water distribution networks by minimising energy cost and chlorine dosage
DOI:
https://doi.org/10.4314/wsa.v41i1.18Keywords:
multi-objective optimisation, aco algorithm, energy cost, disinfection costs, hydraulic reliability, quality reliabilityAbstract
In recent decades much attention has been paid to optimal operation of water distribution networks (WDNs). In this regard, the system operation costs, including energy and disinfection chemicals, as well as system reliability should be simultaneously considered in system performance optimisation, to provide the minimum required level of performance in failure condition and to manage economic limitations. In this study, multi-objective optimisation of water distribution network performance in 3 different scenarios was considered. In these scenarios the effects of time-dependent chlorine injection and pump speed, as well as different combinations of objective functions for minimising energy and disinfection costs and for maximising hydraulic reliability and quality-based reliability are incorporated. As the optimisation method, a multi-objective ant colony optimisation (ACO) algorithm was used because of its high efficiency. For better managing the hydraulic behaviour and water quality in the WDN, considering temporal variations of demand, it is suggested to use variable speed pumps (VSP) as well as to inject chlorine at a variable rate. Application of VSP and time-dependent chlorine injection results in improvements such as reduction in energy and disinfection costs, and decrease in disinfection costs in application of HDSM (head-driven simulation method). In HDSM simulation of WDN, a decrease in hydraulic reliability because of shortages in water supply can be mitigated through extra chlorine injection and increase in quality-based reliability. To deal with this challenge, it is recommended to satisfy the hydraulic reliability first and then to evaluate the quality reliability. Furthermore it is necessary to modify the hydraulic reliability relationship to incorporate different components of the WDN other than pumps. This will provide more reliable results for evaluation of the system performance.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Nadia Babaei, Massoud Tabesh, Sara Nazif
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.