Parameters to characterize the internal recirculation of an oxidation ditch
DOI:
https://doi.org/10.17159/wsa/2021.v47.i2.10923Keywords:
oxidation ditch, hydraulic retention time, internal recirculation ratio, circulatory period, internal recirculation frequencyAbstract
Mixed liquor circulates ceaselessly in the closed-loop corridor in an oxidation ditch (OD), which is significantly different from other wastewater treatment processes. The internal recirculation ratio (IRR), i.e., the ratio between circulation flow rate (QCC) and influent flow rate (QIn), and the circulatory period (T), i.e. the time consumed for the mixed liquor to complete one lap in the circular corridor, was used to quantify the internal recirculation characteristics of the OD system. In order to elucidate the characteristics and applicability of IRR and T, this study obtained the numerical relationship between IRR and T by formula derivation. It also discusses the factors influencing IRR and analyses the applications of IRR and T. The results showed that IRR = QCC/QIn = HRT/T = HRT IRF (HRT = hydraulic retention time of the mixed liquor in the circular corridor; IRF = internal recirculation frequency). Moreover, three kinds of parameters had an effect on IRR: QIn; reactor dimensions, i.e., length (Lmid), width (B), and height (H) of the circular corridor; and horizontal velocity of the mixed liquor in the circular corridor (v). QIn changed IRR by altering HRT. However, B, H, Lmid, and v changed IRR by altering IRF and T. Furthermore, the same IRR corresponded to many different HRT and IRF. Therefore, when QIn and QCC varied in the OD system, using HRT and IRF to evaluate the variation of QIn and QCC, respectively, was better than using IRR to evaluate their synthetical variation. IRF and T were useful for directly and precisely characterizing the circulation speed and circulation flow rate in the circular corridor, while IRR was more useful for evaluating the dilution effect of reflux on influent.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Shao Po Wang , Jing Jie Yu, Hua Ji Ma
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.