Analysis of auto-purification response of the Apies River, Gauteng, South Africa, to treated wastewater effluent

Authors

  • David O Omole 1. Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; 2. Department of Civil Engineering, Covenant University, P.M.B. 1023, Ota, Nigeria
  • Adekunle A Badejo 1. Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; 2. Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Julius M Ndambuki Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
  • Adebola G Musa Department of Computer Science and Informatics, University of the Free State, Private Bag X13, Phuthaditjhaba 9866, South Africa
  • Williams K Kupolati Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa

DOI:

https://doi.org/10.4314/wsa.v42i2.06

Keywords:

de-oxygenation, re-aeration, auto-purification, dissolved oxygen, biochemical oxygen demand, stream

Abstract

The assimilative capacity of water bodies is an important factor in the integrated management of surface water resources. The current study examined the auto-recovery processes of the Apies River from wastewater discharged into it from a municipal wastewater treatment facility, using a series of equations, including the modified Streeter-Phelps equation. Field data obtained include dissolved oxygen (DO), temperature, stream velocity, depth, and width. Water samples were also obtained at 10 sampling stations for the determination of biochemical oxygen demand (BOD) using standard methods. It was observed that the DO and BOD level (5.59 mg/L and 8.5 mg/L respectively) of the effluent from the wastewater treatment facility indicated better water quality than the Apies River background DO level (5.42 mg/L) and BOD level (13 mg/L). Also, at 270 m downstream of the effluent discharge point, another effluent stream (Skinnerspruit) adversely impacted on the Apies River with DO and BOD levels of 6.5 mg/L and 9.0 mg/L, respectively, compared to the Apies River background values of 6.81 mg/L and 8.0 mg/L, respectively. The stream, however, recovered well from both the background and imposed pollution sources as it had a computed positive auto-recovery factor of 1.74. Furthermore, the measured DO deficit was plotted against predicted DO deficit. The plot revealed a close match between the measured and predicted DO deficit, indicating that the model could be used for predicting DO deficit along other segments of the river. To further improve on the natural auto-recovery processes of the Apies River, it was recommended that flow along the Skinnerspruit should be enhanced by clearing the observed aquatic plants growing within the channel. Also, suspected pollution activities taking place further upstream on the Apies River should be investigated and appropriately addressed.

Downloads

Download data is not yet available.

Downloads

Published

2016-04-29

Issue

Section

Research paper

How to Cite

David O Omole (2016) “Analysis of auto-purification response of the Apies River, Gauteng, South Africa, to treated wastewater effluent”, Water SA, 42(2 April). doi:10.4314/wsa.v42i2.06.