Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT
DOI:
https://doi.org/10.4314/wsa.v43i3.10Keywords:
SWAT, digital elevation model (DEM), watershed delineation, threshold valueAbstract
Many hydrological algorithms have been developed to automatically extract drainage networks from DEM, and the D8 algorithm is widely used worldwide to delineate drainage networks and catchments. The simulation accuracy of the SWAT model depends on characteristics of the watershed, and previous studies of DEM resolution and its impacts on drainage network extraction have not generally considered the effects of resolution and threshold value on uncertainty. In order to assess the influence of different DEM resolutions and drainage threshold values on drainage network extraction using the SWAT model, 10 basic watershed regions in China were chosen as case studies to analyse the relationship between extracted watershed parameters and the threshold value. SRTM DEM data at 3 different resolutions were used in this study, and regression analysis for DEM resolution, threshold value and extraction effects was done. The results show that DEM resolution influences the selected flow accumulation threshold value; the suitable flow accumulation threshold value increases as the DEM resolution increases, and shows greater variability for basins with lower drainage densities. The link between drainage area threshold value and stream network extraction results was also examined, and showed a variation trend of power function y = ax b between the sub-basin counts and threshold value, i.e., the maximum reach length increases while the threshold value increases, and the minimum reach length shows no relation with the threshold value. The stream network extraction resulting from a 250 m DEM resolution and a 50 000 ha threshold value was similar to the real stream network. The drainage network density and the threshold value also shows a trend of power function y = ax b ; the value of b is usually 0.5.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Miao Wu, Peng Shi, Ang Chen, Chen Shen, Pengyuan Wang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.