Determining wetland spatial extent and seasonal variations of the inundated area using multispectral remote sensing
Keywords:
wetland extent, remote sensing, ecosystems, change detection, Sustainable Development GoalsAbstract
Wetlands can only be well managed if their spatial location and extent are accurately documented, which presents a problem as wetland type and morphology are highly variable. Current efforts to delineate wetland extent are varied, resulting in a host of inconsistent and incomparable inventories. This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing and GIS for effective wetland management. Multispectral satellite images, together with a digital elevation model (DEM), were used to delineate wetland extent. The seasonal variations of the inundated area were assessed through an analysis of monthly water indices derived from the normalised difference water index (NDWI). Landsat images and DEM were used to delineate wetland extent and MODIS images were used to assess seasonal variation of the inundated area. A time-series trend analysis on the delineated wetlands shows a declining tendency from 2000 to 2015, which could worsen in the coming few years if no remedial action is taken. Wetland area declined by 19% in the study area over the period under review. An analysis of NDWI indices on the wetland area showed that wetland inundated area is highly variable, exhibiting an increasing variability over time. An overlay of wetland area on cultivated land showed that 21% of the wetland area is subjected to cultivation which is a major contributing factor to wetland degradation.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2017 L Nhamo, J Magidi, C Dickens
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution Licence. Users are permitted to read, download, copy, distribute, print, search or link to the full texts of the articles in this journal under the terms of this Licence, without asking prior permission from the publisher or the author, provided the source is attributed. Copyright is retained by the authors.