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Understanding the degradation rates of water meters assists utilities in making informed management 
decisions regarding meter replacement programmes and meter technology selection. This research evaluated 
the performance of 200 residential meters of two different technologies commonly used in Gauteng, South 
Africa, namely velocity meters and volumetric meters. This was done by conducting empirical meter testing 
in a verification laboratory and evaluating the degradation accuracy of each meter technology based on age 
and volume. Results indicate that velocity meters experience an accuracy degradation rate of approximately 
−1.13% per 1 000 kL of volume passed through the meter and an inferred initial error of −10.80%. Meter 
accuracy was not strongly related to age of the velocity meters tested. Volumetric meters did not exhibit a 
strong link with either age or accumulated volume, indicated by a loose grouping of results. These results 
indicate that accumulated volume of a velocity meter is a more reliable predictor of accuracy than age, 
and should be used when planning replacement strategies for velocity meters. Additionally, the lack of 
predictable degradation rates related to either age or accumulated volume for volumetric meters indicates 
that the accuracy of volumetric meters is primarily affected by other external factors, such as particulates or 
entrained air in the water network. These findings will assist utility managers in predicting the accuracy of 
their meter fleet and in making informed decisions regarding meter replacement.

An empirical analysis of residential meter degradation in Gauteng Province,  
South Africa
Ryan Fourie1, Annlizé L Marnewick1 and Nazeer Joseph2

1Postgraduate School of Engineering Management, University of Johannesburg, Johannesburg, South Africa
2Department of Applied Information Systems, School of Consumer Intelligence and Information Systems, University of Johannesburg, 
Johannesburg, South Africa

INTRODUCTION

South Africa is a country with water challenges. The estimated per capita water resource available is  
1 289 m3 per year, categorising South Africa as a water-stressed region (Du Plessis and Hoffman, 2015). 
The average rainfall of 450 mm/year is also below the global average of 780 mm/year (Water, 2011). 
From 2015–2017, the City of Cape Town experienced its worst drought of this century prompting the 
government to issue an alert for ‘Day Zero’ when water supply to homes was expected to be switched 
off (Sousa et al., 2018). This disaster was averted through interventions by the city, farmers and much-
needed rainfall. However, the recurrences of extreme droughts such as this are increasing as global 
warming affects rainfall patterns (Sousa et al., 2018).

The International Water Association (IWA) Performance Indicator system has become a worldwide 
reference to evaluate the performance of a utility, since its first appearance in 2000 (Alegre et al., 2006). 
Apparent losses are defined by the IWA as water delivered to a consumer but not billed for, and form 
a key component of non-revenue water (NRW). Although apparent losses only comprise a small 
proportion of the volume of total water lost, they comprise a much larger proportion of the revenue 
loss of a utility, up to 69% of total NRW by value in some cases (Arregui et al., 2018a). This is because 
apparent losses are valued at the retail cost of water, which may be up to 40 times higher than the 
production cost used for real losses (Thornton et al., 2008; Ncube and Taigbenu, 2015).

Research has shown that the largest contribution towards apparent losses can be attributed to water 
meter inaccuracies (Ncube and Taigbenu, 2015; Moahloli et al., 2019). These can be due to faulty 
meters, meters that have been clogged or broken, or meters that have lost accuracy due to wear and 
tear over their lifespan (Mutikanga et al., 2011a).

In South Africa, the figure for apparent losses is largely unknown. The estimated NRW figure in 
2012 was 36.1% of total water supplied (McKenzie et al., 2012). This research also estimated apparent 
losses to be 25% of total water loss. An analysis of the reported figures for apparent losses from some 
of the major metropolitan areas in South Africa demonstrates this uncertainty and also highlights 
the importance of considering apparent losses in non-revenue water management. In five of the eight 
major metropolitan regions in South Africa, apparent losses are estimated to exceed 10% of billed 
volume. In Gauteng, the three major metropolitan regions of Johannesburg, Ekurhuleni and Tshwane 
estimate a total apparent loss of 73.61 million kL/a. These figures can be seen in Fig. 1 (DWS, 2019).

In most utilities, residential meters make up the largest proportion of consumer meters (Van Zyl, 
2011; Mbabazi et al., 2015; Arregui et al., 2018a). These also constitute the largest revenue component 
of many utilities up to 80% in some cases (Yee, 1999; Mbabazi et al., 2015; Arregui et al., 2018a).  
A residential meter that is aged or faulty is a problem for a utility as it greatly reduces their revenue 
generation capacity.

https://www.watersa.net
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Effective strategies for residential water meter replacement are 
one of the primary management problems facing water utilities 
in South Africa when it comes to reducing apparent losses. In 
South Africa, the average replacement age of a water meter is 20 
years and policies for the monitoring and condition assessment 
of residential water meters are uncommon (Couvelis and Van 
Zyl, 2012b). This results in a network of meters with unknown 
accuracy levels being used to bill clients for services provided. It 
is generally accepted that meters experience a downward trend 
in accuracy over time (Yee, 1999; Stoker et al., 2012). This means 
that as the meter ages, the utility is not able to charge for the full 
volume of the water delivered to the consumer.

An additional consideration is that of meter technology. 
Comparisons of meter technologies have been performed 
elsewhere in Africa. Mbabazi et al. (2015) compared the 
performance of the meter technologies available in Uganda. They 
found that volumetric meters degrade more rapidly with age 
than velocity meters do. Mutikanga et al. (2011) also found that 
volumetric meters are less suitable for conditions in Uganda than 
velocity meters and recommend that any new meter replacements 
be velocity meters. In South Africa, however, there is limited data 
available that directly compares different metering technologies 
(Couvelis and Van Zyl, 2015; Ncube and Taigbenu, 2015).

A utility that understands the rate at which their residential 
meters lose accuracy would have a better understanding of the 
overall performance of their meter population. This would allow 
them to predict the losses related to meter inaccuracies and plan a 
replacement schedule for their meters to optimise economic value 
(Fantozzi, 2009). A comparison of meter technologies would also 
allow utilities to make informed meter selection decisions.

This research focused specifically on the two most commonly used 
15 mm size residential meters in South Africa, namely velocity 
meters and volumetric meters. These two meter technologies 
constitute the bulk of residential water meters installed in South 
African and African water networks (Couvelis and Van Zyl, 2015; 
Ncube and Taigbenu, 2015). The aim of this research was to 
determine the effect that age and accumulated volume have on 
the residential water meters commonly used in South Africa. The 
intention was that utilities will be able to use this information to 
design their replacement strategies and select the correct meter 
type for their application.

Literature review

Residential-sized meters, particularly those with a 15 mm 
nominal diameter, usually constitute the vast majority of all 
meters installed in utility networks globally (Van Zyl, 2011; 
Mbabazi et al., 2015; Arregui et al., 2018a). Additionally, these 
meters constitute the largest revenue component of many utilities, 
up to 80% of total water billed in some cases (Yee, 1999; Mbabazi 
et al., 2015; Arregui et al., 2018a).

In South Africa, two residential meter technologies are dominant. 
These two technologies are the oscillating piston-type volumetric 
meter and the multijet-type velocity meter (Couvelis and Van Zyl, 
2015; Ncube and Taigbenu, 2015). There is limited information 
in other African countries, with the exception of Uganda, where 
these two technologies are also common (Mutikanga et al., 2011b).

Research shows that these two metering technologies have 
differing performance characteristics over time and differ in 
external events susceptibility. Of these two meter technologies, 
the volumetric meter generally has better low-flow characteristics 
and a larger measuring range when new (Van Zyl, 2011). 
However, a volumetric meter also has a higher susceptibility to 
external factors such as particulates or air in the water network 
(Mutikanga et al., 2011b; Mbabazi et al., 2015). Volumetric meters 
have also been found to deteriorate faster than velocity meters in 
some cases (Mbabazi et al., 2015). This has led some researchers to 
conclude that these meters are unsuitable for intermittent systems 
and those with water quality issues (Mutikanga et al., 2011b; 
Couvelis and Van Zyl, 2015; Mbabazi et al., 2015).

Despite this evidence, the volumetric meter is still the most 
prevalent water meter technology in South Africa, constituting 
up to 90% of all meters in the network in some cases (Couvelis 
and Van Zyl, 2015). In Uganda, the volumetric meter technology 
comprises 76% of the meter fleet (Mutikanga et al., 2011b).

The purpose of a water meter is to measure and record the volume 
of water that passes through it. However, mechanical water meters 
are not accurate at all flow rates (Arregui et al., 2007). Certain flow 
rates are too low or high for a water meter to register accurately 
or at all (Mukheibir et al., 2012). In addition, different meter 
technologies, manufacturers and different meters of the same 
type may exhibit different accuracy characteristics (Arregui et al., 
2011).

Figure 1. Apparent loss figures for metropolitan areas in South Africa based on billed volume (adapted from reported figures from DWS, 2019)
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In South Africa, the standard that governs the sale of cold potable 
water meters below 100 mm in diameter is SANS 1529-1:2006 
(SABS, 2006). This standard is based on the ISO 4064-1 standard 
commonly used internationally (ISO, 2014). The purpose of this 
standard is to provide a reference for meter manufacturers and 
producers. It highlights required accuracy tolerances that new and 
used water meters need to conform to for resale. It also explains 
testing procedures and sets limits for uncertainty and flow rates at 
which each meter needs to be tested.

In order to accommodate different accuracy characteristics of 
different meters, the SANS 1529-1 standard defines an accuracy 
envelope (Van Zyl, 2011). There is a lower zone where the relative 
error of the meter cannot exceed 5% and an upper zone where the 
relative error of the meter cannot exceed 2%. For used meters, the 
relative error is relaxed slightly to 3.5% for the upper zone and 8% 
for the lower zone (South African Bureau of Standards, 2006; Van 
Zyl, 2011). These zones of accuracy are bounded by key flow rates 
where each meter is tested.

The key flow rates can be explained as follows:

•	 Minimum flow rate (qmin): This is the lowest flow rate for 
which accuracy requirements are defined. At the minimum 
flow rate, each meter should have a relative error not ex-
ceeding 5% for new meters and 8% for used meters.

•	 Transitional flow rate (qt): This is the point on the flow curve 
where the relative error transitions from the lower zone into 
the upper zone. At the transitional flow rate, the relative 
error should not exceed 2% for new meters and 3.5% for 
used meters.

•	 Permanent flow rate (qp): This is the flow rate at which the 
meter is capable of operating continuously and is often the 
flow rate that is used when selecting a water meter for an 
application (Van Zyl, 2011). At the permanent flow rate, the 
relative error should not exceed 2% for new meters and 3.5% 
for used meters.

•	 Maximum flow rate (qs): The maximum flow rate is the 
maximum flow rate that the meter can withstand for short 
periods without damage. This flow rate is equal to double 
the permanent flow rate. At the maximum flow rate, the 
maximum relative error should also not exceed 2% for new 
meters and 3.5% for used meters.

There are three primary causes for a meter to inaccurately register 
the water flowing through it. The first is low-flow consumption. 
This is a phenomenon that influences the consumer usage profile 
causing a larger proportion of water usage to occur at flow rates 

that are below the accuracy envelope of the meter. This results in 
the meter registering inaccurate or no consumption (Fantozzi, 
2009; Ncube and Taigbenu, 2016). This is usually caused by 
incorrectly sized meters or low-flow leakage (Couvelis and Van 
Zyl, 2015; Ncube and Taigbenu, 2016).

The second cause is external factors that cause the meter to 
function outside its design parameters resulting in damage to the 
meter. Examples of external factors include particulates in the 
water, entrained air in the water network and flow rates that exceed 
the water meter’s maximum capacity (Criminisi et al., 2009; Buck 
et al., 2012; Chadwick, 2018). External factors can cause a meter 
to become inaccurate or completely fail (Mutikanga et al., 2011b).

The third cause is meter degradation. Meter degradation refers 
to the gradual deterioration of accuracy of mechanical water 
meters over time (Davis, 2005). This is a common phenomenon 
of mechanical water meters and is a primary driver for meter 
replacement in some utilities (Fontanazza et al., 2012; Shields et 
al., 2012; Ncube and Taigbenu, 2018). Meter degradation is the 
primary focus of this research. Low-flow leakage and abnormal 
events, while significant, are a function of the field conditions 
of a water meter and are difficult to predict with any accuracy 
(Mutikanga et al., 2011b).

It is generally accepted that residential meters experience a 
downward trend in accuracy as they age (Couvelis and Van Zyl, 
2015; Ncube and Taigbenu, 2015; Arregui et al., 2018a). This 
phenomenon has been attributed to wear and tear of the moving 
parts, the build-up of deposits such as limescale inside the meter 
body or algal growth (Seago et al., 2002; Arregui et al., 2005; 
Criminisi et al., 2009).

In general, two variables are used when calculating the rate of 
degradation of a water meter. These are the duration of time that 
the meter has been installed in years, also called ‘meter age’, and 
the total volume of water that the water meter has registered in its 
lifetime, also known as ‘accumulated volume’. These two variables 
are commonly found either on the meters themselves, in the case 
of accumulated volume, or in the meter replacement records of 
the utility in the case of meter age (Ncube and Taigbenu, 2019).

The degradation rates found for residential meters vary in 
literature, based on location where the meters were extracted, 
meter technology and manufacturer and the method of data 
analysis (Ncube and Taigbenu, 2019). The results obtained in 
past research are highlighted in Table 1 for age and Table 2 for 
accumulated volume.

Figure 2. Accuracy envelope for new meters (adapted from SANS 1529-1 standard, SABS, 2006)
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As seen in Table 1, the degradation rates obtained for age range 
from −0.3% to −0.5% per annum (Couvelis and Van Zyl, 2015; 
Arregui et al., 2018a; Moahloli et al., 2019). The primary outlier 
of these results was recorded by Mbabazi et al. (2015) who 
found degradation rates between −1.45% and −6.67%. Stoker et 
al. (2012) and Ncube and Taigbenu (2015) found no definitive 
relationship between meter accuracy and age while Arregui et al. 
(2014; 2018a) established a non-linear relationship between meter 
accuracy and age.

The only technology comparison performed was done by Mbabazi 
et al. (2015). They found that the volumetric meters tested  
(M1 and M2) degraded at a higher rate per annum than the 
velocity meters tested (M3). The primary reason given for this 
was the poor water quality in the Ugandan water network which 
affected the volumetric meters more than the velocity meters.

The degradation rates for accumulated volume varied slightly 
more than those for age. As seen in Table 2, the degradation rates 
for accumulated volume ranged from 0.34% per annum to −1.3% 
per annum (Couvelis and Van Zyl, 2015; Ncube and Taigbenu, 
2015; Arregui et al., 2018a). Again, Stoker et al. (2012) found no 
relationship between meter accuracy and accumulated volume. 
The lack of a definitive relationship could be due to the fact that 
the meters came from multiple sources across the United States 
and were of differing technologies. The water quality also differed. 
The results found by Moahloli et al. (2019) were in contrast to 
those of previous research as they discovered a positive rate of 
degradation with regard to accumulated volume.

Less research was available that evaluated the meter degradation 
based on accumulated volume than on meter age. This is despite 
the fact that Davis (2005) and Ncube and Taigbenu (2015) indicate 
that accumulated volume is a better predictor of meter accuracy 
than age.

METHODOLOGY

Past research in South Africa has made progress in the evaluation of 
the rate of degradation of residential meters. The most commonly 
used technique for determining meter degradation is comparing 
consumption figures for water meters before and after their 
replacement to estimate meter error. This method has been used 
by Couvelis and Van Zyl (2015) in Cape Town as well as Ncube and 
Taigbenu (2015) and Moahloli et al. (2019) in Gauteng. However, 
the uncertainty related to this method is higher than for empirical 
methods as it can provide an inaccurate figure for the apparent 
losses and cause a utility to generate a replacement strategy based 
on erroneous information (Ncube and Taigbenu, 2019).

The empirical method of data analysis, by testing used meters in a 
laboratory environment, has been proven to be the most accurate 
method of estimating the accuracy of a water meter (Moahloli 
et al., 2019; Ncube and Taigbenu, 2019). While this method is 
commonly employed internationally, limited meter degradation 
information has been generated using this method in South Africa. 
Degradation data generated using this method will assist water 
utilities in accurately predicting the accuracy of their water meters 
and replacing them at the point of maximum return on investment.

Table 1. Meter accuracy degradation rates based on age from previous research

Authors Location Data analysis method Meter technology Degradation per year, %

Yee (1999) A utility in Fremont, CA Empirical testing Various −0.34%

Stoker et al. (2012) Utilities across the USA Empirical testing Various No definitive relationship

Arregui et al. (2014) A utility in Spain Empirical testing Velocity Fast initial degradation to 
−10% before stabilising

Mbabazi et al. (2015) A utility in Uganda Billing database Volumetric (M1 and 
M2), velocity (M3)

−6.67% (M1)
−4.68% (M2)
−1.45% (M3)

Couvelis and Van Zyl (2015) A utility in South Africa Billing database Volumetric −0.36%

Ncube and Taigbenu (2015) A utility in South Africa Meter validation test records Various No definitive relationship

Arregui et al. (2018b) A utility in Spain Billing database Various −0.5%

Arregui et al. (2018a) A utility in Spain Empirical testing Velocity −0.49% (M1)
Non-linear regression (M2)

Moahloli et al. (2019) A utility in South Africa Billing database Various −0.32% (approximate value)

Table 2. Meter accuracy degradation rates based on accumulated volume from previous research

Authors Location Data analysis method Meter technology Degradation per 1 000 kL, %

Davis (2005) A utility in Tucson, AZ Empirical testing Various −0.34%

Stoker et al. (2012) Utilities across the USA Empirical testing Various No definitive relationship

Arregui et al. (2014) A utility in Spain Empirical testing Velocity Quadratic degradation  
profile after 2 500 m3

Couvelis and Van Zyl (2015) A utility in South Africa Billing database Volumetric −0.9%

Ncube and Taigbenu (2015) A utility in South Africa Meter validation test records Various −0.64%

Arregui et al. (2018a) A utility in Spain Empirical testing Velocity Non-linear regression 
(average −1.1%) (M1)

Non-linear regression 
(average −1.3%) (M2)

Moahloli et al. (2019) A utility in South Africa Billing database Various +1.75%
(approximate value)
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Figure 3. Summary of the research process derived from previous research methodologies  (Davis, 2005; Ncube and Taigbenu, 2015;  
Arregui et al., 2018a) 

The generally accepted best practice for the generation of 
empirical accuracy data involves the generation of an accuracy 
curve by testing each water meter at different flow rates (Davis, 
2005; Ncube and Taigbenu, 2015; Arregui et al., 2018a). This is 
then paired with a consumer usage profile between each of the 
flow rates tested which provides a single weighted error figure 
for each meter. A regression analysis is then performed for 
each meter type against the independent variables of age and 
accumulated volume to calculate a degradation rate. This process 
is known as the weighted error methodology (Davis, 2005; Ncube 
and Taigbenu, 2015; Arregui et al., 2018a).

As seen in Table 3, the sample size for an empirical test varies 
in literature from 30 units up to 1 197 units of each meter type 
depending on the study. The median sample size is approximately 50 
units. This research followed the weighted error methodology with 
a sample size of 100 units of two different metering technologies 
for a total sample of 200 units. The two meter technologies selected 
were the oscillating piston-type volumetric meter and the multijet-
type velocity meter as these make up the vast majority of meters 
installed in the Gauteng region. These meters were sourced from 
the largest metropolitan municipality by area in the Gauteng 
region and were meters that had been removed from the ground 
by the utility as part of their meter replacement process. Meters 
removed during this process are expected to have a higher than 
average rejection rate as they are sourced at the end of the meters’ 

expected lifecycle. However, it is expected that all meters as a part 
of this process were subject to the same bias, as they follow the 
same replacement programme. As such, the rejection rates will not 
be compared directly with other literature, but rather be compared 
only with each other, to negate any bias. The meters chosen 
comprised of two different accuracy classes with the velocity meter 
having a Class B rating and the volumetric meter being Class C. 
The meters were both from the same manufacturer. Some of the 
details of the meters are outlined in Table 4 below.

The testing was conducted in an accredited meter test laboratory 
and according to the meter testing procedures outlined in SANS 
1529-1:2006. The consumer usage profile was generated from 
three previous research papers in South Africa. A summary of the 
research process followed is depicted in Fig. 3 (Davis, 2005; Ncube 
and Taigbenu, 2015; Arregui et al., 2018a).

Table 3. Sample sizes in previous research

Authors Year of publication Total sample size Maximum sample size per meter model/size

M. Yee (1999) 1997 350 30

Arregui et al. (2003) 2003 238 191

Davis et al. (2005) 2005 1 297 Not available

Arregui et al. (2007) 2007 287 160

Fantozzi (2009) 2009 738 Not available (4 meter types were tested)

Richards et al. (2010) 2010 381 48

Shields et al. (2012) 2012 252 48

Du Plessis and Hofmann (2015) 2015 91 54

Ncube and Taigbenu (2015) 2015 3 278 1 192

Arregui et al. (2016) 2016 330 30

Arregui et al. (2018a) 2018 1 210 804

Ncube and Taigbenu (2019) 2019 123 51

Table 4. Meter accuracy degradation rates based on accumulated 
volume from previous research

Meter type Velocity Volumetric

Meter technology Multijet Oscillating piston

Meter nominal diameter DN15 DN15

Designed flow rate (m3/h) 1.5 1.5

Meter accuracy class B C
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In order to conduct regression analysis, information related to the age 
and accumulated volume of the meters was obtained either from the 
meter itself or from the meter testing database. The age information 
retrieved related to the installation and removal dates of the meter. 
This information was then used to calculate the age of each meter in 
years. In some cases, the installation and removal dates of a meter 
were not in the billing database of the utility due to information 
either being incorrect or omitted. This is a symptom seen previously 
in South Africa and was previously remedied by using the date of 
manufacture of the water meter (Ncube and Taigbenu, 2015). In 
this case, the manufacture date of the water meter and the date the 
meter was taken from the utility’s premises were used where the 
installation and removal dates were not available.

For the purposes of this research, an error metric for a water 
meter that takes into account the entire accuracy curve of the 
meter needs to be defined. Past research has solved this problem 
by combining the accuracy characteristics for a flow rate range 
with the proportional consumption at a specific flow rate range. 
This metric is called weighted error (Yee, 1999; Arregui et al., 
2018a; Ncube and Taigbenu, 2019).

This weighted error is calculated based on the accuracy curve 
for each meter obtained during meter testing and the consumer 
usage profile for residential meters used in this research. This 
provides a single unique error value per meter that can be used 
in the regression analysis. This process is highlighted in Fig. 4 
(Mutikanga et al., 2011b; Arregui et al., 2018a).

Meter accuracy information was generated from testing the 
meters at a number of key flow rates in an accredited meter 
testing laboratory. All tests were conducted in accordance with 
SANS 1529-1:2006. Although the water quality of the test was not 
measured during this research, the water in the test environment 
was filtered before it entered the water meters and was regularly 
checked for any particulates. The assumption was that this would 
have a negligible effect on the performance of the water meters.

The number of flow rates used to establish an accuracy curve 
varies in research but recent literature generally agrees that 
using up to 10 flow rates and focusing on lower flow rates 
(below 120 L/h) is best for generating a detailed accuracy curve  
(Arregui et al., 2018b; Ncube and Taigbenu, 2019). Because the 

meters were initially tested according to SANS 1529-1 (Class B 
and C), the flow rates selected for testing were directly related 
to these values. The flow rates tested and their relation to the 
tested flow rates of SANS 1529-1 (Class B and C) are displayed in  
Table 5.

The equation used for the calculation of weighted error has been 
extracted from previous research (Ncube and Taigbenu, 2019). It 
is described by Eq. 1:

                  �
�

�

�� � ��w

q

n

q q q
1

10 5PTC GAAL GAAL. ( ) 	 (1)

where

��w = weighted error of an individual meter

n = number of flow rates tested

PTCq = consumption percentage between each flow rate from 1 
to n

GAALq = accuracy of the meter at each flow rate from 1 to n

GAAL0 = meter accuracy at a flow rate of 0, which is assumed to 
be −100%

The consumer usage profile is an indication of the demand 
pattern of a consumer for a specific flow rate range within the 
meter’s operating range (Richards et al., 2010). This usage profile 
is usually generated by recording the consumer meters in the field 
(Ncube and Taigbenu, 2016; Arregui et al., 2018a). The consumer 
usage profile used in this research was extracted from previous 
research. It was based on three studies, two from the Gauteng 
region (Ncube and Taigbenu, 2016, 2019) and one from the 
Western Cape (Couvelis and Van Zyl, 2012a). The Western Cape 
was included as it provided representative data that aligned with 
international research better than the Gauteng data (Arregui et al., 
2016). Also, the two datasets for the Gauteng data were from the 
same researchers, thus it was likely that the data source was the 
same. Because the flow rates used in each study differ from those 
used in this research, the data was linearly interpolated to align 
with the flow rates used in this research. The consumer usage 
profile used in this research is displayed in Fig. 5.

Table 5. Key test flow rates and relation to SANS 1529-1 (Class B and C) tested flow rates

Key flow rates F1-F10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Relation to SANS 
1529-1 test flow rates

0.5 x Qmin 
(Class C)

Qmin 
(Class C)

Qmin 
(Class B)

2 x Qt 
(Class C)

2 x Qmin 
(Class B)

Qt  
(Class B)

2 x Qt 
(Class B)

0.5 x Qn 
(Class B/C)

Qn  
(Class B/C)

Qmax

(Class B/C)

Flow rate (L/h) 7 15 30 45 60 120 240 750 1 500 3 000

Figure 4. Calculation of weighted error from previous research (adapted from Mutikanga et al., 2011b; Arregui et al., 2018a) 
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Figure 5. Consumer usage profile, extracted from previous research in South Africa (Ncube and Taigbenu, 2016, 2019; Couvelis and Van Zyl, 2012a) 

The consumer usage profile used in this research indicates a high 
proportion of consumption at lower flows, which aligns with 
other results in Africa. A flow rate of less than 15 L/h accounted 
for 14.81% of total consumption and a flow rate of less than 30 L/h 
accounted for 27.19%. Research conducted in Uganda reported a 
similar proportional consumption of 14% below 15 L/h and 25% 
below 35 L/h (Mutikanga et al., 2011b). However, international 
research reports lower figures of between 4.7% and 10% below 
12 L/h and between 7.3% and 14.9% below 36 L/h (Arregui et 
al., 2016; Arregui et al., 2018a). This contrast can be attributed to 
an increased incidence of on-site leakage experienced in South 
Africa (Couvelis and Van Zyl, 2012a; Ncube and Taigbenu, 2016).

Although the conditions of the laboratory are controlled, it is 
impossible to regulate or predict what effect the in-field conditions 
have had on the performance of the water meters removed. As 
such, a data-cleaning step was performed in this research to 
remove any meters that may skew the results. Past studies have 
also used this technique in which meters that fall outside a 
particular accuracy tolerance are rejected (Ncube and Taigbenu, 
2015; Davis, 2005). One method when using the weighted error 
methodology is to define a maximum and minimum tolerance for 
the meter readings. However, these tolerances vary in literature 
and the sources of these errors are not defined.

Used meter tolerances in this paper were determined through the 
calculated error tolerance (South African Bureau of Standards, 
2006). All tested meters were approved to a minimum of the Class 
B standard and the accuracy tolerances according to Class B were 
used. According to the standard, the maximum tolerance for a 
Class B used meter is ±3.5% for flow rates of 120 L/h or above 
and ±8% for flow rates from 30 L/h to 120 L/h. Flow rates below 
30 L/h do not have any accuracy requirements and as such the 
maximum error below 30 L/h was assumed to be ±100%. When 
these were compared to the key flow rates and the consumption 
profile used in this research, the results in Table 6 were obtained. 
The data from Table 6 provided an acceptable tolerance of ±25% 
for this research.

Two meter degradation curves were generated for each meter 
type based on meter age and accumulated volume of the meter. 
When analysing the degradation rates of residential meters, the 
most commonly used and accepted analysis in research is linear 
regression analysis (Stoker et al., 2012; Mbabazi et al., 2015; Ncube 
and Taigbenu, 2015). The equations used in the calculation of the 
degradation rates were adapted from previous research (Arregui 
et al., 2018b). Equation 2 was used for calculating the degradation 
based on age:

                                � �i i it A t� � � � � � �0 ADR 	 (2)

where

εi (t) = error at time t

εi (A0) = calculated initial weighted error at time 0

ADRi = degradation rate due to age of the meter

Equation 3 was used for calculating the accumulated volume:

                              � �i i iV V V� � � � � � �0 VDR 	 (3)

where

εi (V) = error of the meter at volume V

εi (V0) = calculated initial weighted error at zero volume

VDRi = rate of degradation due to volume of the meter

Also calculated for each regression analysis is the coefficient of 
determination, R2. The coefficient of determination indicates 
the proportion of the variance in the dependent variable (meter 
accuracy) that can be explained by the independent variable 
(age or accumulated volume). An R2 value above 0.5 indicates 
that most of the variance in the accuracy can be explained by 
the independent variable being analysed. An R2 value below 0.5 
indicates that other factors have a greater effect on the accuracy 
than the independent variable being analysed (Ncube and 
Taigbenu, 2015).

Table 6. Key flow rates used in this research with minimum/maximum acceptable tolerances

Key flow rates F1-F10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Weighted error

Flow rate (L/h) 7 15 30 45 60 120 240 750 1 500 3 000

Maximum acceptable 
tolerance (%)

+100% +100% +8% +8% +8% +3.5% +3.5% +3.5% +3.5% +3.5% +24.93%

Minimum acceptable 
tolerance (%)

−100% −100% −8% −8% −8% −3.5% −3.5% −3.5% −3.5% −3.5% −24.93%
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Figure 7. Weighted error versus age – volumetric meters 

Figure 9. Weighted error versus accumulated volume – volumetric 
meters

Figure 8. Weighted error versus accumulated volume – velocity 
meters

Figure 6. Weighted error versus age – velocity meters

RESULTS

The two meter types tested differed in terms of their age and 
accumulated volume. Table 7 indicates the age and accumulated 
volume information for the meters tested.

The average age of the velocity meters tested was 53% higher than 
that of the volumetric meters. The maximum age of the velocity 
meter was 50% higher than the maximum age of the volumetric 
meters tested. The average accumulated volume of the velocity 
meters was 3 110 kL, more than 178% higher than the average 
accumulated volume of the volumetric meters (1 118 kL). For the 
purposes of this research, clock-overs were not taken into account. 
This is because, of all meters sourced, none had a consumption 
figure of more than 50% of the clock-over consumption. It can 
safely be assumed that it was unlikely that the tested meters 
experienced a clock-over event.

During the data-cleaning step, the number of meters of each 
meter technology that were rejected was recorded. For the 
velocity meters, 27 out of a total of 100 meters tested were 
rejected. For the volumetric meters, 45 out of a total of 100 
meters tested were rejected. The results indicate a 66% higher 
comparative rejection rate for volumetric meters than for velocity 
meters. This relationship is in line with research conducted in 
Uganda, indicating up to 75% of all failures being experienced in 
volumetric meters (Mutikanga et al., 2011b).

The accuracy of both the velocity and volumetric meters tested 
had a limited relationship to the age of the meter although the 
degradation rate for the velocity meters was within the boundaries 
of results obtained from previous research. The results obtained 
are shown in the regression analysis in Figs 6 and 7.

The results for velocity meters show a degradation rate based on 
age of −0.44% per annum. This result is similar to that of past 
empirical research, which generally falls between −0.3% and 
−0.5% per annum (Yee, 1999; Arregui et al., 2018a). The calculated 
initial weighted error εi (A0) of the curve was found to be −11.33%. 
The coefficient of determination (R2) returned for velocity meters 
was 0.16, indicating that only 16% of the variance in accuracy of a 
velocity meter can be explained by its age.

For the volumetric meters tested, the age-based degradation 
ADRi was calculated at +0.71% per annum, with a calculated 
starting error εi (A0) value of −16.19%. The results were not tightly 
grouped, with a coefficient of determination (R2) of 0.11, which 
indicates that only 11% of the variance in accuracy of a volumetric 
meter can be explained by age.

Of the two meters tested, only the relationship between the 
accuracy of a velocity meter and accumulated volume produced 
a conclusive result that fell within the boundaries from previous 
research. The results obtained are shown in the regression analysis 
in Figs 8 and 9.

Table 7. Comparison of average age and accumulated volume of volumetric and velocity meters

Meter type Maximum 
age (years)

Average  
age (years)

Maximum accumulated 
volume (kL)

Average accumulated 
volume (kL)

Average annual  
volume (kL)

Velocity 14.24 7.45 13 118 3 110 417.45

Volumetric 9.47 4.85 4 179 1 118 230.52
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The accumulated volume-based degradation rate VDRi calculated 
for the velocity meters tested was −0.00113% per kL, or −1.13% 
per 1 000 kL. This result shows similarity with that of past 
research, which tended to fall between −0.3% and −1.3% per  
1 000 kL for empirical testing (Davis, 2005; Ncube and Taigbenu, 
2015; Arregui et al., 2018a). The calculated starting error εi (V0) 
identified was −10.80. The results obtained for accumulated 
volume for velocity meters yielded the tightest grouping with a R2 
value of 0.54, the only strong relationship found.

The accumulated volume-based results shown in Fig. 9 obtained 
for volumetric meters indicate that almost none (3.3%) of the accu-
racy of a volumetric meter could be explained by its accumulated 
volume. The regression analysis returned a degradation rate VDRi 
of +0.00127% per kL or +1.27% per 1 000 kL, and an calculated 
initial weighted error εi (V0) value of −13.47%. The large difference 
between the calculated initial weighted errors, εi (V0) and εi (A0), 
also highlights that the results obtained are not reliable.

DISCUSSION

A regression analysis was performed for age and accumulated 
volume once the weighted error of each meter was obtained. 
Four regression analyses were performed, two per meter type 
tested, based on the meter age and its accumulated volume. 
The regression analysis produced two variable outputs: the 
degradation rate based on age (VDRi) and accumulated volume 
(VDRi), as well as the initial weighted error of the meters based on 
age (εi (A0)) and accumulated volume (εi (V0)). The coefficient of 
determination (R2) for each regression analysis was also obtained. 
These results are listed in Table 8 and discussed below.

There is a weak relationship between meter age and the accuracy 
of either a velocity or volumetric residential meters. This is 
indicated by the R2 values of 0.16 and 0.11 that were obtained for 
velocity and volumetric meters, respectively. This is lower than the 
minimum R2 value of 0.5 required to denote a strong relationship. 
This result indicates that age should not be used as a factor for 
meter replacement as it only has a small influence on the accuracy 
of either velocity or volumetric meters installed.

A strong relationship between accumulated volume and meter 
accuracy for velocity meters was established. This was the only 
strong relationship established in this research. This relationship 
can be explained with the following equation:
                                �i V V� � � � � �10 80 1 13. . 	 (4)
where

εi (V) = percentage weighted error of the meter at volume VV = 
accumulated volume that has passed through the meter, measured 
in 1 000 kL.

These values are similar to those obtained in previous empirical 
research on residential meters (Couvelis and Van Zyl, 2015; 
Ncube and Taigbenu, 2015; Arregui et al., 2018a).

The accuracy of the velocity meters tested returned a strong rela-
tionship with accumulated volume, with an R2 value of 0.54, but 
did not have a strong relationship with age. This result confirms 
conclusions drawn from previous research on residential meters 
that accumulated volume is a more reliable accuracy indicator than 
age for velocity-type residential meters (Davis, 2005; Ncube and 
Taigbenu, 2015). This is a useful result for utilities, as if the meter 
installation date and removal date are lost, the accumulated volume 
of a meter can simply be retrieved from the register of the meter.

The volumetric meters tested returned poor relationships 
with both age and accumulated volume. This result indicates 
that outside influences may play a greater role in the accuracy 
variability of these meters. This confirms previous research 
indicating that volumetric meters are more susceptible to outside 
influences such as particulates or entrained air present in the 
water supply (Buck et al., 2012; Basu, 2019).

Further, a high comparative rejection rate was experienced for 
these meters (66% higher than the rejection rate for velocity 
meters in this study). This result is of significance, as this meter 
is still the predominant meter used in South Africa (Couvelis and 
Van Zyl, 2015; Ncube and Taigbenu, 2019).

CONCLUSIONS

Utilities in South Africa are currently facing the twin challenges 
of a water supply that is becoming increasingly unreliable as 
supply dwindles as well as high levels of NRW in their networks. 
This is exacerbated by lack of data available to make informed 
management decisions on the replacement of assets, particularly 
regarding water meters. This research, an experimental procedure 
involving laboratory testing of water meters, was identified as the 
best option for the generation of meter error data. In total, 100 
water meters were tested of each of the two most commonly used 
technologies of residential water meters (volumetric and velocity 
meters) in South Africa. Using an empirical process of testing 
water meters and calculating a weighted error figure was identified 
as best practice for determining meter accuracy. After conducting 
empirical testing on 100 meters of two differing technologies, the 
following conclusions can be drawn:

•	 For multijet-type velocity meters, a relationship was identi-
fied between the accuracy of the meter and its accumulated 
volume.

•	 For oscillating piston-type volumetric meters, it was not 
possible to identify a strong relationship between the accu-
racy of the meter and its accumulated volume.

•	 It was not possible to find a definitive relationship between 
the accuracy of either meter technology and its age.

This result provides valuable information to utilities in Gauteng. 
Using this information, utilities will be able to design replacement 
strategies better, utilizing cumulative consumption instead of age 
as a replacement metric. This result should also assist utilities in 
selecting the correct meter type for their application.

Further research

This research intentionally had a narrow focus. The focus was on 
two commonly used technologies of water meters from a single 
manufacturer and sourced from a single utility. This was done to 
reduce the risk of uncertainty due to meter manufacturer or type 
as tolerances may be different per manufacturer. Water conditions 
are also unique per location and will affect the meter technologies 
and types differently.

In order to compare rejection rates with other literature, future 
studies should include meters removed at random from the field, 
not only meters at the end of their lifecycle. This will prevent any 

Table 8. Summary of results obtained from regression analysis

Results based on meter age

Meter type εi (A0)
(%)

ADRi

(% per year)
R2

Velocity −11.33% −0.44% 0.16

Volumetric −16.19% +0.71% 0.11

Results based on accumulated volume

Meter type εi (V0)
(%)

VDRi

(% per 1 000 kL)
R2

Velocity −10.80% −1.13% 0.54

Volumetric −13.47% +1.27% 0.033
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rejection rate bias. Future research on the topic could expand 
on this research by including different utilities and locations as 
well as different manufacturers and/or different technologies to 
increase the information pool that can be used by utilities for their 
meter selection and replacement strategies in future.

REFERENCES

ALEGRE H, MELO BAPTISTA J, CABRERA EJ, CUBILLO F, DUARTE 
P, HIRNER W, MERKEL W and PARENA R (2006) Performance 
Indicators for Water Supply Services (2nd edn.). IWA Publishing, 
London. 312 pp.

ARREGUI FJ, BALAGUER M, SORIANO J and GARCÍA-SERRA J 
(2016) Quantifying measuring errors of new residential water meters 
considering different customer consumption patterns. Urban Water 
J. 13 (5) 463–475. https://doi.org/10.1080/1573062X.2014.993999

ARREGUI FJ, CABRERA E, COBACHO R and GARCÍA-SERRA J 
(2005) Key factors affecting water meter accuracy. URL: http://
rash.apanela.com/tf/leakage/Key Factors Affecting Water Meter 
Accuracy.pdf

ARREGUI FJ, COBACHO R, CABRERA E and ESPERT V (2011) 
Graphical method to calculate the optimum replacement period 
for water meters. J. Water Resour. Plan. Manage. 137 (1) 143–146. 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000100

ARREGUI FJ, COBACHO R, SORIANO J and JIMENEZ-REDAL R 
(2018b) Calculation proposal for the economic level of apparent 
losses (ELAL) in a water supply system. Water. 10 (12) 1809. https://
doi.org/10.3390/w10121809.

ARREGUI FJ, GAVARA FJ, SORIANO J and COBACHO R (2014) 
Analysis of domestic water meters field performance. In: Proceedings 
of the Water Loss 2014 Conference, 30 March – 2 April 2014, Vienna.

ARREGUI FJ, GAVARA FJ, SORIANO J and PASTOR-JABALOYES 
L (2018a) Performance analysis of ageing single-jet water meters 
for measuring residential water consumption. Water. 10 (5) 1–18. 
https://doi.org/10.3390/w10050612

ARREGUI FJ, PARDO MA, PARRA JC and SORIANO J (2007) 
Quantification of meter errors of domestic users: a case study. In: 
Proceedings of the Water Loss 2007 Conference, 23–26 September 2007, 
Bucharest. 1–11. : https://www.mcast.edu.mt/rfm/source/Research/ 
ApparentLosses/outreach/QUANTIFICATION-OF-METER-ERR 
ORS-OF-DOMESTIC-USERS-A-CASE-STUDY.pdf

BASU S (2019) Chapter IV − Positive displacement (PD) type flow 
metering. In: Plant Flow Measurement and Control Handbook: 
Fluid, Solid, Slurry and Multiphase Flow. Elsevier, London. https://
doi.org/10.1016/B978-0-12-812437-6.00001-9

BUCK BS, JOHNSON MC and BARFUSS SL (2012) Effects of 
particulates on water meter accuracy through expected life. J. Am. 
Water Works Assoc. 104 (4) 65–66.

CHADWICK JR (2018) Accuracy of residential water meters in response 
to short, intermittent flows. MSc. Thesis, Utah State University. 
https://digitalcommons.usu.edu/etd/7034

COUVELIS FA and VAN ZYL JE (2012a) Apparent water loss due to 
consumer meter inaccuracies in selected areas of South Africa. PhD 
thesis, University of Cape Town, Cape Town.

COUVELIS FA and VAN ZYL JE (2012b) Apparent water losses related 
to municipal metering in South Africa. WRC Report No. 1998/1/12. 
Water Research Commission, Pretoria.

COUVELIS FA and VAN ZYL JE (2015) Apparent losses due to domestic 
water meter under-registration in South Africa. Water SA. 41 (5) 
698–704. https://doi.org/10.4314/wsa.v41i5.13

CRIMINISI A, FONTANAZZA CM, FRENI G and LA LOGGIA G 
(2009) Evaluation of the apparent losses caused by water meter 
under-registration in intermittent water supply. Water Sci. Technol. 
60 (9) 2373–2382. https://doi.org/10.2166/wst.2009.423

DAVIS SE (2005) Residential water meter replacement economics. 
URL: http://rash.apanela.com/tf/leakage/Residential Water Meter 
Replacement Economics.pdf

DWS (Department of Water and Sanitation) (2019) IWA Water Balance 
Diagram. URL: http://www.dwa.gov.za/Dir_WS/ndrp/graph_iwa.
aspx (Accessed 23 February 2019).

DU PLESSIS JA and HOFFMAN JJ (2015) Domestic water meter 
accuracy. WIT Transactions on Ecology and The Environment. 200 
197–208. https://doi.org/10.2495/WS150171

FANTOZZI M (2009) Reduction of customer meters under-registration 
by optimal economic replacement based on meter accuracy testing 
programme and unmeasured flow reducers. In: Proceedings of the 5th 
IWA Water Loss Reduction Specialist Conference, 26–30 April 2009 
April, Cape Town.

FONTANAZZA CM, FRENI G, LA LOGGIA G, NOTARO V and 
PULEO V (2012) A composite indicator for water meter replacement 
in an urban distribution network. Urban Water J. 9 (6) 419–428. 
https://doi.org/10.1080/1573062X.2012.690434

ISO (International Organization for Standardization) (2014) Water 
meters for cold potable water and hot water -- Part 1: Metrological 
and technical requirements. ISO, Switzerland. ISO 4064-1:2014| 
OIML R49-1:2013.

MBABAZI D, BANADDA N, KIGGUNDU N, MUTIKANGA HE and 
BABU M (2015) Determination of domestic water meter accuracy 
degradation rates in Uganda. J. Water Supply: Res. Technol. 64 (4) 
486–492. https://doi.org/10.2166/aqua.2015.083

MCKENZIE R, SIQALABA ZN and WEGELIN WA (2012) The state 
of non-revenue water in South Africa (2012). WRC Report No. TT 
522/12. Water Research Commission, Pretoria.

MOAHLOLI A, MARNEWICK A and PRETORIUS JH (2019) Domestic 
water meter optimal replacement period to minimize water revenue 
loss. Water SA. 45 (2) 165–173.

MUKHEIBIR P, STEWART R, GIURCO D and HALLORAN KO (2012) 
Understanding non-registration in domestic water meters. AWA 
Water December 2012 1–6.

MUTIKANGA HE, SHARMA SK and VAIRAVAMOORTHY K 
(2011a). Assessment of apparent losses in urban water systems. 
Water Environ. J. 25 (3) 327–335. https://doi.org/10.1111/j.1747-65 
93.2010.00225.x

MUTIKANGA HE, SHARMA SK and VAIRAVAMOORTHY K (2011b) 
Investigating water meter performance in developing countries: a 
case study of Kampala, Uganda. Water SA 37 (4) 567–574. https://
doi.org/10.4314/wsa.v37i4.18

NCUBE M and TAIGBENU A (2015) Meter accuracy degradation and 
failure probability based on meter tests and meter change data. In: 
Proceedings of the 4th YWP-ZA Biennial Conference and 1st African 
YWP Conference, 16–18 November 2015, Pretoria.

NCUBE M and TAIGBENU A (2016) Consumption characterisation 
and on-site leakage in Johannesburg, South Africa. In: IWA Water 
Loss Conference 2016, 31 January – 3 February 2016, Bangalore.

NCUBE M and TAIGBENU A (2018) Decision enhancement for the 
management of apparent water losses. In: Proceedings of WISA 2018 
Biennial Conference and Exhibition, 26 June 2018, Cape Town.

NCUBE M and TAIGBENU A (2019) Assessment of apparent losses 
due to meter inaccuracy – a comparative approach. Water SA. 45 (2) 
174–182. https://doi.org/10.4314/wsa.v45i2.03

RICHARDS GL, JOHNSON MC and BARFUSS SL (2010) Apparent 
losses caused by water meter inaccuracies at ultralow flows. Am. 
Water Works Assoc. 102 (5) 123–132. https://doi.org/10.1002/j.1551- 
8833.2010.tb10115.x

SEAGO C, BHAGWAN J and MCKENZIE R (2002) Benchmarking 
leakage from water reticulation systems in South Africa. Water SA. 
30 (5) 25–32.

SHIELDS DJ, BARFUSS SL and JOHNSON MC (2012) Revenue 
recovery through meter replacement. J. Am. Water Works Assoc. 104 
(4) 69–70. https://doi.org/10.5942/jawwa.2012.104.0056

SOUSA P, BLAMEY R, REASON C, RAMOS A and TRIGO R 
(2018) The “Day Zero” Cape Town drought and the poleward 
migration of moisture corridors. URL: http://iopscience.iop.org/
article/10.1088/1748-9326/aaebc7/meta

SABS (South African Bureau of Standards) (2006) Water meters for cold 
potable water Part 1: Metrological characteristics of mechanical 
water meters of nominal bore not exceeding 100 mm. SABS, Pretoria.

STOKER DM, BARFUSS SL and JOHNSON MC (2012) Flow 
measurement accuracies of in-service residential water meters. 
J. Am. Water Works Assoc. 104 (12). https://doi.org/10.5942/jaw 
wa.2012.104.0145

THORNTON J, STURM R and KUNKEL G (2008) Water Loss Control 
(2nd edn). McGraw Hill, New York. 632 pp.

VAN ZYL JE (2011) Introduction to integrated water meter management. 
WRC Report No. TT 490/11. Water Research Commission, Pretoria. 
128 pp.

https://doi.org/10.1080/1573062X.2014.993999
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000100
https://doi.org/10.3390/w10050612
https://www.mcast.edu.mt/rfm/source/Research/ApparentLosses/outreach/QUANTIFICATION-OF-METER-ERRORS-OF-DOMESTIC-USERS-A-CASE-STUDY.pdf
https://www.mcast.edu.mt/rfm/source/Research/ApparentLosses/outreach/QUANTIFICATION-OF-METER-ERRORS-OF-DOMESTIC-USERS-A-CASE-STUDY.pdf
https://www.mcast.edu.mt/rfm/source/Research/ApparentLosses/outreach/QUANTIFICATION-OF-METER-ERRORS-OF-DOMESTIC-USERS-A-CASE-STUDY.pdf
https://doi.org/10.1016/B978-0-12-812437-6.00001-9
https://doi.org/10.1016/B978-0-12-812437-6.00001-9
https://digitalcommons.usu.edu/etd/7034
https://doi.org/10.4314/wsa.v41i5.13
https://doi.org/10.2166/wst.2009.423
http://rash.apanela.com/tf/leakage/Residential%20Water%20Meter%20Replacement%20Economics.pdf
http://rash.apanela.com/tf/leakage/Residential%20Water%20Meter%20Replacement%20Economics.pdf
http://www.dwa.gov.za/Dir_WS/ndrp/graph_iwa.aspx
http://www.dwa.gov.za/Dir_WS/ndrp/graph_iwa.aspx
https://doi.org/10.2495/WS150171
https://doi.org/10.1080/1573062X.2012.690434
https://doi.org/10.2166/aqua.2015.083
https://doi.org/10.1111/j.1747-6593.2010.00225.x
https://doi.org/10.1111/j.1747-6593.2010.00225.x
https://doi.org/10.4314/wsa.v37i4.18
https://doi.org/10.4314/wsa.v37i4.18
https://doi.org/10.4314/wsa.v45i2.03
https://doi.org/10.1002/j.1551-8833.2010.tb10115.x
https://doi.org/10.1002/j.1551-8833.2010.tb10115.x
https://doi.org/10.5942/jawwa.2012.104.0056
http://iopscience.iop.org/article/10.1088/1748-9326/aaebc7/meta
http://iopscience.iop.org/article/10.1088/1748-9326/aaebc7/meta
https://doi.org/10.5942/jawwa.2012.104.0145
https://doi.org/10.5942/jawwa.2012.104.0145


655Water SA 46(4) 645–655 / Oct 2020
https://doi.org/10.17159/wsa/2020.v46.i4.9078

WATER (2011) South Africa: a water scarce country. World Cup Legacy 
Report 6 58–73. https://www.environment.gov.za/sites/default/files/
docs/water.pdf

YEE MD (1999) Economic analysis for replacing residential 
meters. J. Am. Water Works Assoc. 91 (7) 72–77. https://doi.org/ 
10.1002/j.1551-8833.1999.tb08666.x

https://www.environment.gov.za/sites/default/files/docs/water.pdf
https://www.environment.gov.za/sites/default/files/docs/water.pdf
https://doi.org/10.1002/j.1551-8833.1999.tb08666.x
https://doi.org/10.1002/j.1551-8833.1999.tb08666.x

