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Total dissolved solids (TDS) is an important property in the characterization of natural waters for diversified 
applications, such as in geochemistry and the petroleum industry. Under appropriate circumstances, the 
determination of this parameter through correlations with the electrical conductivity (EC) of aqueous systems 
yields considerable advantages over the gravimetric method. However, the development of empirical 
equations correlating TDS and EC is still required due to the physical-chemical complexity of charge transport 
in multicomponent natural waters. Most existing correlations were built considering systems in the lower 
or medium salinity range. In this context, this research aims to provide experimental correlations between 
TDS and EC in a broad concentration range for high salinity formation brines characteristic of the pre-salt 
reservoirs. It contributes to filling a gap in the literature for geochemical systems of this nature. Moreover, 
correlations were also obtained for a concentrated desulphated seawater and an aqueous sodium chloride 
solution in the same salinity range. For all aqueous solutions, the polynomial fittings of degree greater 
than one fit the experimental data better compared to both linear and exponential equations. In addition, 
the solutions with higher concentration of divalent ions had lower EC than the solutions dominated by 
monovalent ions with the same ionic strength. This evidences the effect of ion pairing on the EC, particularly 
in solutions of high ionic strength. Therefore, the use of a general correlation to represent solutions with 
dramatic variations in chemical composition carries substantial error, particularly in the high salinity range. 
Thus, a specific correlation must be developed to represent brines with similar composition.
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INTRODUCTION

Total dissolved solids (TDS) is an important property in the characterization of natural waters. It is 
defined as the total concentration of inorganic and organic matter in aqueous solution, which can 
be in ionic form or not (Hubert and Wolkersdorfer, 2015; McNeil and Cox, 2000). The inorganic 
components of TDS are composed in their majority by the ions calcium, magnesium, sodium, 
bicarbonate, chloride and sulfate; whereas the organic components of TDS are estimated based on 
the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) (Balasubramanian 
et al., 1999).

The acquisition of TDS of natural waters encounters diversified applications in geochemistry (Jonker 
et al., 2013), desalination industry (Walton, 1989), hydrology (Leske and Buckley, 2004), soil and 
groundwater science (Douglas, 2001; Verwey and Vermeulen, 2011), and the petroleum industry  
(Sun et al., 2015; Lord and LeBas, 2013; Brown and Sheedy, 2002). In geochemistry, TDS is particularly 
relevant for interpreting electrical well logs, correlating stratigraphic units and investigating the 
movement of subsurface waters (Collins, 1975). In the petroleum industry, TDS is essential to 
evaluate the possibility of formation of inorganic scales throughout the entire oil production system 
(Gudmundsson, 2018). Furthermore, in the field of enhanced oil recovery (EOR), TDS is also critical 
to ensuring the chemical stability of the fluids injected into petroleum reservoirs with the aim of 
increasing the recovered volume of hydrocarbons (Sheng, 2010).

TDS characterization is also relevant for environmental reasons. Global concern has been raised 
regarding the effect of effluent TDS on the biotic integrity of the streams (Helms et al., 2009; Weber-
Scannell and Duffy, 2007). Several studies discuss the importance of evaluating physicochemical 
alteration of aqueous environments considerably affected by human interventions (Moncayo-Estrada 
et al., 2014; Moreyra and Padovesi-Fonseca, 2015; Deksissa et al., 2003). Clear effects of water salinity 
alteration to the biotic integrity in different systems have been reported elsewhere (Daniels et al., 2016; 
Ivanova and Kazantseva, 2006; Timpano et al., 2015).

The gravimetric method is the standard procedure to determine TDS. It consists of weighing the 
dry residue resulting from evaporating a measured volume of a filtered water sample (Hubert and 
Wolkersdorfer, 2015). However, a number of disadvantages have been attributed to this method 
(Hem, 1985; Raju, 2007; Gustafson and Behrman, 1939; Walton, 1989; Hubert and Wolkersdorfer, 
2015). Incorrect quantification of bicarbonate ions occurs as half of them volatilize as carbon dioxide 
at temperatures around 100°C (Walton, 1989). During evaporation, the crystalline structure of 
precipitated salts can confine some water into them. In this case, the crystallization water will be 
weighed jointly with the precipitated salts (Hem, 1985). Additionally, the volatilization of acids, 
mainly at low pH values, causes the loss of some anionic content, such as chloride and nitrite ions. 
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On the other hand, extra mass can be considered due to oxidation 
or transformation into hydroxides during the heating process 
(Hubert and Wolkersdorfer, 2015).

Although the gravimetric method is laborious and time 
consuming, the accuracy of its results is not always acceptable 
as it mainly depends on selecting a drying temperature which 
allows the release of all crystallization water without provoking 
any chemical decomposition (Gustafson and Behrman, 1939). 
Another proposed method to estimate TDS relies on the 
conductivity of an electrolyte solution, which is its capability to 
conduct an electric current when a potential is applied between 
the electrodes immersed in it (Coury, 1999; Hem, 1985). In this 
context, the conductivity of a portion of an electrolyte solution, 
κ (in S/m or Ω-1/m), with length l (in m) and area A (in m2) is 
defined by Eq. 1 (Crow, 1994):

                                       �
�

� � �
1 l
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A
 	 (1)

where ρ is the reciprocal of κ, known as resistivity (in Ω∙m), R 
is the resistance of the solution (in Ω) and G is the reciprocal 
of R, known as the conductance of the solution (in S or Ω-1). In 
this work, the term electrical conductivity (EC) is used to refer 
to the conductivity measured at 25°C, which is also defined as 
specific conductance in other publications (Miller et al., 1988). 
The parameter l/A is called the cell constant and is utilized to 
convert the measured conductance of an aqueous solution to 
its conductivity using Eq. 1. This parameter is determined by 
calibrating the cell by measuring the conductance of a reference 
solution with known conductivity (Cazes, 2004; Hubert and 
Wolkersdorfer, 2015; Crow, 1994; Walton, 1989).

The relationship between TDS and conductivity is often described 
in the literature by the following correlation (Eq. 2) (Pawlowicz, 
2008; Visconti et al., 2010; Visconti Reluy et al., 2004; Hem, 1985):

                                            TDS � �f T� 	 (2)

where f is a conversion factor and κT is the conductivity at a 
specified temperature T (usually 25°C). This conversion factor 
ranges between 0.5 and 0.9 for most water types (Walton, 1989). 
In particular, in South African mine waters this factor was found 
to vary from 0.25 to 1.34 (Hubert and Wolkersdorfer, 2015), and 
it can be as elevated as 1.4 in meromictic saline lakes (Pawlowicz, 
2008). In particular, sulphate ions were shown to affect the 
relationship between EC and concentration due to incomplete 
dissociation (Tanji, 1969). As natural waters are complex aqueous 
systems with diversified ratios of ionic and undissociated species, 
in many cases a non-linear relationship between TDS and EC arises  
(Hubert and Wolkersdorfer, 2015). The reason for this is that the 
EC of an aqueous solution depends on the activity of each specific 
dissolved ionic component and the average activity of all in 
solution. These in turn are affected by temperature, concentration 
of each ionic component and TDS of the solution (Siosemarde et al., 
2010). As a result, different electrolytes affect the EC in a different 
fashion. Hence, equal variations of EC at constant temperature can 
either result from alterations in the TDS of the solution or changes 
in the chemical composition (Marandi et al., 2013).

Under appropriate circumstances, the use of correlations 
with EC to determine the TDS of natural waters provides 
considerable advantages over the gravimetric method and the 
chemical analysis due to the simplicity, speed, low cost and 
accuracy of EC measurements (Hayashi, 2004; Raju, 2007). 
Conductivity of aqueous solutions increases with temperature. 
Usually, conductivity measurements are carried out at different 
temperatures in the field and adjusted to conductivity at a reference 
temperature (i.e. 25°C) using a temperature coefficient. Since the 
type and concentration of electrolytes alter this coefficient, it 
should be measured for each specific system (Smith, 1962).

Accurate EC data can be collected in the field for a broad range 
of geochemical applications (Shirokova et al., 2000; Marandi 
et al., 2013). As a result, correlations between TDS (or ion 
concentrations) and EC were reported in studies related to the 
quality of natural waters (Alhumoud et al., 2010; Daniels et al., 
2016; Krishna Kumar et al., 2015; McNeil and Cox, 2000), soil 
salinity assessment (Zhang et al., 2009; Siosemarde et al., 2010; 
Daniels et al., 2016; Visconti Reluy et al., 2004), seawater intrusion 
analysis (El Moujabber et al., 2006; Sylus and Ramesh, 2015) and 
crustal fluids investigation (Sakuma and Ichiki, 2016; Guo et al., 
2015; Shimojuku et al., 2014).

An alternative procedure for obtaining the TDS is through the 
full chemical analysis of the water sample. In addition, several 
methods to calculate the EC from the chemical composition are 
available in the literature. McCleskey et al. (2012a) published a 
comparison of 11 methods to calculate EC in natural waters. The 
authors identified the methods that performed best for waters with 
complex chemical compositions (Pawlowicz, 2008; McCleskey et 
al., 2012b). However, none of the methods were suitable for brines 
due to their lack of accuracy at high ionic strengths.

Moreover, geochemical computer programs, such as PHREEQCI 
(Charlton and Parkhurst, 2002), were developed to calculate EC 
of aqueous solutions from their chemical composition. A recent 
update (McCleskey, 2018) presents an alternative to extend the 
calculation over a large range of ionic strength, temperature and 
pH. Furthermore, industry application software that calculate the 
EC from chemical composition using different thermodynamic 
models are also available. A widely used tool is the Geochemist’s 
Workbench (Aqueous Solutions LLC), which uses the USGS 
(McCleskey et al., 2012a) and APHA (American Public Health 
Association, 2017) models. Another product available is OLI 
Analyzer Studio (OLI Systems Inc.), which uses a mixed solvent 
electrolyte (MSE) model framework (Wang et al., 2002) combined 
with existing formulations (Bromley, 1972; Meissner and Kusik, 
1978; Pitzer et al., 1978; Helgeson et al., 1981). Nevertheless, the 
accuracy of these tools for complex high salinity brines has yet to 
be assessed.

Charge transport in multicomponent aqueous systems is not 
yet entirely understood from the physical-chemical perspective. 
Hence, the development of empirical equations is still necessary 
to predict TDS from EC measurements (Visconti Reluy et al., 
2004). To the best of our knowledge, published works in the 
literature mostly consider natural waters with a low salinity range, 
which does not exceed 40 000 mg/L (Rusydi, 2018; Marandi et al., 
2013; McNeil and Cox, 2000; Raju, 2007; Alhumoud et al., 2010; 
Sylus and Ramesh, 2015). Hayashi (2004) studied brines of up to 
133 000 mg/L; however, his work focused on the relation between 
temperature and conductivity. Although papers regarding the 
investigation of crustal fluids have analysed ionic solutions of 
higher salinities, their studies were limited to conditions of 
elevated pressures and temperatures (Sakuma and Ichiki, 2016; 
Guo et al., 2015; Shimojuku et al., 2014). Thus, data considering 
aqueous systems with salinities over 200 000 mg/L is scarce.

Brazilian pre-salt reservoirs have proven to be game-changers for 
the oil and gas industry (Filho et al., 2015; Pizarro and Branco, 
2012). Additionally, basins in offshore Angola, Gabon, Cameroon, 
Democratic Republic of Congo, Equatorial Guinea and Namibia 
have been proposed as analogous prospects to the Brazilian Pre-
Salt with outstanding potential for hydrocarbon reserves (Koch 
et al., 2013; Jameson et al., 2011). The formation brines in fields 
from South Atlantic pre-salt reservoirs can have TDS values over 
150 000 mg/L (Drexler et al., 2019, 2020). Given the economic 
relevance of these reservoirs, it is important to study an adequate 
and efficient method for measuring the TDS of their brines, which 
are outside the range of the correlations present in the literature.
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In this regard, the aim of this research is to develop experimental 
correlations between TDS and EC in a broad concentration range 
for two highly concentrated formation brines characteristic of 
the pre-salt environment, to fill the existing gap in literature. 
Furthermore, two additional aqueous solutions were included in 
this study to evaluate the effect of the chemical composition. The 
data were fitted using polynomial and exponential regressions 
to produce a set of correlations with different fitting errors. 
In addition, the EC was calculated using OLI Studio Stream 
Analyzer for all brines. The results were compared with the 
experimental data to validate the use of both methods in high 
salinity environments. The equations generated in this work 
can be used to estimate TDS from EC measurements for similar 
aqueous systems under a wide range of concentrations when there 
is uncertainty in the concentration of any of the species obtained 
by standard methods (McCartney et al., 2005). They can also 
be used as an alternative calculation method for complex high 
salinity brines; this application is still undergoing validation for 
currently available software.

MATERIALS AND METHODS

Four high-salinity aqueous solutions were synthesized based on 
their natural compositions: two formation brines from Brazilian 
pre-salt fields, a concentrated desulphated seawater (DSW) used 
for injection at offshore operations and an aqueous sodium 
chloride solution. The typical TDS of the DSW injected in oil 
field operations is 39 548 mg/L; however, it was concentrated to  
230 000 mg/L maintaining the ratio among the concentrations of 
all ions in order to compare the EC data from all of these aqueous 
solutions over a similar concentration range.

All brines were synthesized in the laboratory by weighting the 
corresponding masses of each inorganic salt on an analytical scale 
and dissolving them in deionized water (EC less than 1 µS/cm 
at 25°C, Gehaka OS10LXE reverse osmosis system), following 
their chemical compositions (Table 1). The salts used in this 
work, including their supplier and purity, are given in Table 2. 
After dissolution, brines were stirred for an hour before being 
connected to a vacuum pump for air removal. For each water type, 
triplicates were prepared to minimize experimental errors and to 
ensure the repeatability of the technique. Thereby, the presented 
results only consider the mean value of the triplicates of the EC 
measurements. The corresponding error bars on the plots indicate 
the standard error of the mean for each group of triplicates.

For all aqueous solutions, EC was measured using a Mettler Toledo 
InLab 731-ISM graphite, four-pole conductivity probe attached 
to a Mettler Toledo SevenExcellence S470 conductivity benchtop 
meter. This instrument has a 0.57 cm-1 cell constant and is able 
to measure EC values in the range of 0.01 to 1 000 mS/cm with a 
resolution of 0.01 µS/cm and an accuracy of ±0.5%. Using a four-
pole conductivity cell makes the EC measurements more reliable 
by eliminating polarization effects, which become more relevant 
when measuring highly concentrated samples (Jespersen, 2006). 
Moreover, all measurements were carried out at 25°C using a 
thermostatic bath with temperature indication. Calculated data 
were obtained using OLI Studio Stream Analyzer 9.6.3.

RESULTS AND DISCUSSION

Validation of the procedures employed in this work

In order to validate the procedures employed in this work, the EC 
data obtained from this study, both experimental and calculated, 
were compared to those found in the literature (Robinson and 
Stokes, 2002) for aqueous sodium chloride solutions (Fig. 1).

Both experimental and calculated EC data presented relative 
errors lower than 5% when compared to the EC data provided by 
Robinson and Stokes (2002) for all the concentrations considered. 
This result shows that the EC data produced through the 
experimental measurements and the calculations with OLI Studio 
in this study are in agreement with Robinson and Stokes (2002), 
which supports their validity.

Table 1. Chemical composition, total dissolved solids (TDS, calculated as the sum of the concentrations of all ions) and electrical conductivity 
(EC) of the aqueous solutions

Ion Ion concentrations (in mg/L)

Field B brine Field D brine Concentrated DSW Sodium chloride solution

Na+ 57 584 65 745 69 698 114 950

K+ 1 202 1 735 2 906 0

Ca2+ 24 218 1 263 2 903 0

Mg2+ 2 121 303 9 884 0

Ba2+ 23 226 0 0

Sr2+ 1 259 716 51 0

SO4
2- 54 0 0 0

Cl- 139 904 106 511 143 790 177 250

CO3
2- 0 0 181 0

HCO3
- 0 0 587 0

Br 
- 0 586 0 0

TDS (in mg/L) 226 365 177 085 230 000 292 200

EC (in µS/cm) 230 116 193 120 212 207 238 819

Table 2. Description of the inorganic salts used to synthesize the 
aqueous solutions

Inorganic salt Supplier Purity level

NaCl Isofar ≥ 99.5%

CaCl2∙2H2O Isofar ≥ 99.0%

MgCl2∙6H2O Sigma-Aldrich ≥ 99.0%

KCl Isofar ≥ 99.0%

BaCl2∙2H2O Sigma-Aldrich ≥ 99.0%

SrCl2∙6H2O Isofar ≥ 99.0%

Na2SO4 Sigma-Aldrich ≥ 99.0%

Na2CO3 Sigma-Aldrich ≥ 99.5%

NaHCO3 Isofar ≥ 99.7%

NaBr Sigma-Aldrich ≥ 99.0%
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Figure 5. Curves of electrical conductivity as a function of total 
dissolved solids experimentally obtained and calculated with OLI 
Studio for sodium chloride solution (TDS range: from 20 000 to 292 
200 mg/L). The error bars on the experimental data indicate the 
standard error of the mean for the triplicate experiments

Figure 3. Curves of electrical conductivity as a function of total 
dissolved solids experimentally obtained and calculated with OLI 
Studio for Field D brine (TDS range: from 20 000 to 177 085 mg/L). The 
error bars on the experimental data indicate the standard error of the 
mean for the triplicate experiments

Figure 4. Curves of electrical conductivity as a function of total 
dissolved solids experimentally obtained and calculated with OLI 
Studio for concentrated DSW (TDS range: from 20 000 to 230 000 
mg/L). The error bars on the experimental data indicate the standard 
error of the mean for the triplicate experiments

Figure 2. Curves of electrical conductivity as a function of total 
dissolved solids experimentally obtained and calculated with OLI 
Studio for Field B brine (TDS range: from 20 000 to 226 365 mg/L). The 
error bars on the experimental data indicate the standard error of the 
mean for the triplicate experiments

Figure 1. Curves of electrical conductivity as a function of total 
dissolved solids experimentally obtained and calculated with OLI 
Studio (both from this study) and that provided by Robinson and 
Stokes (2002) for aqueous sodium chloride solutions. The error bars 
on the experimental data indicate the standard error of the mean for 
the triplicate experiments

Development of correlations

As can be seen, both experimental and calculated data for all 
water types (Figs 2 to 5) generate curves with a decreasing slope, 
particularly at the higher concentration range. This behaviour 
agrees with well-known effects that retard the movement of ions 
in systems subject to an electrical field (Wright, 2007). First, 
the relaxation effect is caused by the attractive force exerted by 
oppositely charged ions in the surrounding atmosphere, which 
reduce the activity coefficient (Atkins and De Paula, 2006; 
Glueckauf, 1949). In addition, the electrophoretic effect is the 
consequence of ion interactions with the solvation molecules 
around the other ions (Simón and García, 1999). As concentration 
increases, ion–ion and ion–solvent interactions become more 
substantial. As a result, the EC of the aqueous solutions rises 
at progressively lower rates with increasing TDS (Hem, 1985; 
McNeil and Cox, 2000; Walton, 1989). This explains the non-
linearity observed in EC with increasing TDS (Walton, 1989).

Moreover, Figs 2 to 5 illustrate good agreement between 
experimental and calculated data. For concentrations below 
100 000 mg/L in all aqueous solutions, the maximum relative 
difference between calculated and experimental EC values was 
3.14%. Furthermore, the maximum difference for the higher TDS 
range in all aqueous solutions was 9.29%.

The previously discussed phenomena are linked to ion 
concentration. In contrast, ion pairing is related to both 

concentration and type of ions in solution (Smedley, 1980). 
Divalent ions (such as Ca2+, Mg2+ and SO4

2-) are more likely to form 
ion pairs than monovalent ions like Na+, K+ and Cl- (Alzubaidi and 
Webster, 1983). These pairs may have reduced (or even neutral) 
charge, having lower contribution to the conductivity. As a result, 
ion pairing decreases the EC of the solution (Chang et al., 1983; 
Simon et al., 1994; Simón and García, 1999).
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Figure 6. Curves of electrical conductivity as a function of ionic 
strength for all aqueous solutions using data calculated with OLI Studio

To evaluate the effect of the concentration of divalent ions, Fig. 6  
shows the EC as a function of the ionic strength using data 
calculated with OLI Studio, whose model considers ion–ion 
interactions (Wang et al., 2002). As can be seen, both solutions 
with the lowest concentration of divalent cations (sodium chloride 
solution and Field D brine) have higher EC values at the same ionic 
strengths. In addition, Field B brine, which contains the greatest 
concentration of divalent ions, has the lowest EC. Furthermore, the 
difference in EC between the solutions dominated by monovalent 
ions (sodium chloride solution and Field D brine) and the brines 
with greater concentration of divalent ions (Field B brine and 
concentrated DSW) broadens as the ionic strength increases. This 
is in agreement with previous investigations studying ion-pairing 
in solutions with lower ionic strengths than those considered in 
this work (Timpson and Richardson, 1986; Marion and Babcock, 
1976; Simón and García, 1999).

To provide accurate correlations for TDS as a function of EC 
measurements, several curve fittings were executed on the 

experimental data of each aqueous solution. The curve fittings 
consisted of 1-to-4-degree polynomial fittings and exponential 
fittings. The resulting correlations of the polynomial fittings can 
be expressed in the form of the following general equation:

                             TDS � � � � �a b c d e� � � �4 3 2 	 (3)

where TDS is total dissolved solids in mg/L, κ is EC in µS/cm 
and a, b, c, d and e are coefficients whose values are presented in  
Table 3 for each type of polynomial fitting and aqueous solution. 
Table 3 also gives the coefficients of determination (R2) obtained for 
all polynomial fittings.

For the exponential fittings, a generic equation was used to obtain 
the correlations (Eq. 4), where TDS is total dissolved solids in 
mg/L and κ is EC in µS/cm. The values of coefficients a and b for 
each aqueous solution along with the coefficients of determination 
(R2) of all of the exponential fittings are presented in Table 4.

Table 3. Coefficients and R2 values of the polynomial correlations between total dissolved solids and electrical conductivity obtained from the 
experimental data for each aqueous solution

Polynomial fittings
Aqueous solutions Linear Second degree Third degree Fourth degree
Field B brine a 0 0 0 −2 × 10-16

b 0 0 3 × 10-12 1 × 10-10

c 0 3 × 10-6 1 × 10-6 −2 × 10-5

d 1.0631 0.3989 0.5489 1.9209
e −24,761 4,982.6 591.89 −29,028

R² 0.9875 0.9982 0.9982 0.9988
Field D brine a 0 0 0 −2 × 10-16

b 0 0 6 × 10-13 1 × 10-10

c 0 2 × 10-6 2 × 10-6 −1 × 10-5

d 0.9755 0.481 0.5025 1.5452
e −18 380 1,956.5 1,393.5 −19,524

R² 0.9899 0.9994 0.9994 0.9996
Concentrated DSW a 0 0 0 1 × 10-16

b 0 0 2 × 10-11 −5 × 10-11

c 0 4 × 10-6 −3 × 10-6 8 × 10-6

d 1.1589 0.1501 0.9445 0.2187
e −30,537 13,592 −9,187.9 5,415.5

R² 0.9817 0.9988 0.9998 0.9999
Sodium chloride solution a 0 0 0 −8 × 10-17

b 0 0 2 × 10-11 6 × 10-11

c 0 5 × 10-6 −2 × 10-6 −1 × 10-5

d 1.2366 −0.04 0.8056 1.3738
e −38,632 20,818 −5,617.4 −18,467

R² 0.9669 0.9975 0.9991 0.9991

Table 4. Coefficients and R2 values of the exponential correlations 
between total dissolved solids and electrical conductivity obtained 
from the experimental data of each aqueous solution

Aqueous solutions Exponential fittings

Field B brine a 17,410

b 1 × 10-5

R² 0.9717

Field D brine a 15,900

b 1 × 10-5

R² 0.9670

Concentrated DSW a 16,747

b 1 × 10-5

R² 0.9817

Sodium chloride solution a 16,905

b 1 × 10-5

R² 0.9826
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                                                       TDS � aeb� 	 (4)

Considering the R2 values (Tables 3 and 4), the exponential 
correlations did not result in a better fit than the polynomial ones. 
For only the sodium chloride solution did the exponential fitting 
presented a higher R2 than the linear one. Moreover, the polynomial 
correlations of second and higher degrees fit the experimental 
data better than both linear and exponential correlations. The 
fact that the experimental data are better described by polynomial 
correlations of higher degrees is in agreement with the non-
linear relationship between TDS and EC, especially at a higher 
concentration range. For instance, if the linear equation were 
used to calculate the TDS of a sodium chloride solution from a 
measured EC of 238 819 µS/cm (last experimental point in Fig. 5), 
the relative error compared to the experimental value would be 
12.15%. On the other hand, if the quadratic equation were used 
for the same purpose, the relative error would be 1.45%. However, 
increasing the degree of the polynomial correlations above the 
second degree did not yield a substantial increase in R2 in any 
of the aqueous solutions. In the aforementioned example, if the 
fourth-degree correlation were used to calculate the TDS of the 
same sodium chloride solution, the relative error would be 1.40%, 
only 0.05% lower than the one obtained from the second-degree 
correlation.

As this study shows, the determination of the TDS based on the 
EC needs brine-specific correlations. The relevance of the chemical 
composition of aqueous systems for their EC has been reported 
elsewhere (Marandi et al., 2013; Siosemarde et al., 2010; Walton, 
1989). The equations generated in this work (Tables 3 and 4) also 
support this relevance. For instance, if the quadratic equation 
obtained for Field D brine was used to calculate the TDS of the 
sodium chloride solution of the example in the previous paragraph, 
the relative error would be 20.98%, as opposed to the 1.45% 
obtained when the correct second-degree correlation was used. 
This corroborates the relevance of developing specific correlations 
for complex brines containing high concentrations of divalent 
cations (Van Niekerk et al., 2014). The use of correlations generated 
with model brines regardless of proper chemical composition 
characterization is not recommended as it may result in erroneous 
TDS determinations (Pawlowicz, 2008; Raju, 2007; Hubert and 
Wolkersdorfer, 2015).

CONCLUSIONS

The determination of total dissolved solids (TDS) has application 
in a variety of fields, such as geochemistry, hydrology and 
environmental science. The characterization of waters in the 
petroleum industry requires estimating the TDS in high salinity 
brines, for which ion–ion and ion–solvent interactions have a 
substantial effect. This study presents experimental correlations 
of the TDS as a function of electrical conductivity (EC) for brines 
typical of pre-salt formations, with salinities between 20 000 and 
292 200 mg/L.

For all brines, the higher degree polynomials presented a better 
fitting of the experimental data, showing that there is no linear 
correlation between TDS and EC for higher brine concentrations. 
In contrast, the use of exponential correlations did not improve 
the R2 of the fitting.

Chemical composition is of remarkable relevance for the 
calculation of TDS. The correlations between TDS and EC depend 
on the type of ions and their concentrations in the aqueous 
solution. Therefore, a specific correlation should be generated 
for each type of brine. The use of equations developed for model 
brines may carry substantial error, particularly when analysing 
high salinity brines.

This study may serve as reference for the EC of high-salinity pre-
salt brines. Moreover, the correlations generated in this work can 
be used to estimate the TDS from EC measurements when the 
chemical composition is analogous to the pre-salt waters used by 
our group. As previously discussed, given the tendency of divalent 
cations to form ion pairs, having a similar concentration and type 
of divalent cations is particularly important when using these 
correlations in analogous solutions.
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