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Reliable spatial data of evapotranspiration (ET) in support of water resources management are limited. ET 
is a major component of the water balance, in many regions, and therefore it is critical that it be accurately 
quantified. To identify a product that accurately estimates spatially distributed ET for application in data-scarce 
regions, an inter-model comparison was conducted between the MOD16 ET dataset and the ET calculated 
with the calibrated and validated JAMS/J2000 hydrological model in the Sandspruit catchment (South Africa). 
Annual JAMS-ET and MOD16-ET data were generally consistent. Monthly JAMS-ET and MOD16-ET dynamics 
are influenced by the response of vegetation to precipitation as well as the atmospheric evaporative demand. 
The maximum correlation coefficient between JAMS-ET and MOD16-ET was 0.82 and it was evident at Lag 
0, showing that both ET estimates are in phase when evaluated at the basin scale. The maximum correlation 
coefficients between the ET estimators and precipitation were 0.67 and 0.70 for JAMS-ET and MOD16-ET, 
respectively, and this was evident at Lag 2 (1 lag is 1 month) for both methods. This suggests that there is 
a 2-month delay in the maximum response of ET to precipitation. The models did not exhibit significant 
dependence on the seasonal distribution of precipitation. The complementary use of hydrological modelling 
and satellite-derived data may be greatly advantageous to water resources management, e.g., water allocation 
studies, ecological reserve determinations and vegetation water use studies. The results of the inter-model 
comparison also provide motivation for the use of the MOD16 ET dataset to estimate ET in data-scarce regions. 
Additionally, this study provides evidence for the potential use of validated satellite-based ET data as inputs 
in hydrological models. This may facilitate a more realistic representation of the catchment hydrological 
processes.

INTRODUCTION

The availability of hydrological data is a critical component in water resources management. It 
allows for scientifically based decisions to be made concerning the availability and allocation 
of water resources, the long-term historic and future trends, as well as the impacts of land use 
change. Many regions, particularly developing countries, are however data-scarce and this poses a 
significant challenge to water resources management in these countries.

Rainfall and evapotranspiration (ET) are particularly critical variables, as they are major 
components of a catchment’s water cycle. The availability of ET data is far more limited than for 
rainfall data (Hughes, 2008; Hughes et al., 2015). Measurements of ET are seldom available at spatio-
temporal scales which are required to accurately inform water resource management decisions. 
This is primarily due to the costs associated with direct measuring equipment, complexities in 
calculating ET and the extensive data requirements (e.g. air temperature, humidity, radiation, 
wind speed, etc.) of commonly used estimation methods, such as those based on the Penman-
Monteith equation (Monteith, 1965). The challenges associated with determining ET are further 
aggravated by the fact that point-measured data need to be up-scaled for large areas or catchments, 
producing a huge source of uncertainty, especially in arid and semi-arid areas with diverse land use 
where ET is highly variable spatially (Jovanovic et al., 2015). Moreover, in these arid and semi-arid 
areas, ET is generally the second-largest component of the water balance after rainfall (Bugan et al., 
2012; Munch et al., 2013), and therefore its determination is essential for efficient water resources 
management.

To estimate spatially distributed variables of the water cycle, hydrological models are being used 
around the world at multiple spatial scales (Leavesley et al., 1983; Schulze, 1994; Arnold et al., 1998; 
Krause, 2002; Bugan et al., 2012). Distributed and continuous hydrological models are advanced 
tools that, in their basic form, have the objective of converting point precipitation data into flow 
estimates, but in the process they can also compute the value of many variables and hydrological 
processes across a catchment. For this reason, these models are widely used for estimating ET and 
calculating complete water balances within a catchment.

Distributed models generally compute actual evapotranspiration (ET) using many inputs such as 
potential evapotranspiration (PET) calculated from atmospheric conditions, land use and vegetation 
characteristics, soil type and properties, and soil water availability. When soil water availability 
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is not a limiting factor, the most critical choice is the method 
used to calculate PET (Kingston et al., 2009), as it is computed 
to be the maximum possible evaporation rate from a given 
land cover. On the contrary, under water-limited conditions, 
ET is modulated mostly by the available soil water simulated 
by the model. The choice of a method to accurately calculate 
PET depends on the specific environmental characteristics of a 
basin (climate and land cover), but in reality, data availability 
and reliability represent the biggest constraints. This can lead to 
over- or under-estimation of ET and consequently to inaccurate 
calculation of simulated streamflow (Milly and Dunne, 2010). 
Large-scale spatial variability of ET may represent an important 
source of uncertainty in hydrological models (Kingston et al., 
2009; Hay et al., 2010). A promising technique to overcome these 
difficulties is the use of earth observation (EO) data to construct 
ET estimation algorithms (Bastiaanssen et al., 1998a, b; Su, 
2002; Allen et al., 2007a, b; Mu et al., 2007a; Miralles et al., 2011).

The increasing availability of EO data at high frequencies and 
large spatial scales is advantageous in data-scarce regions, in 
terms of catchment water management. EO data are collected 
via remote sensing from aircrafts/satellites and involve the 
measurement of reflected electromagnetic energy. Remotely 
sensed data can be translated into spatial variables such as land 
surface temperature, surface reflectance, and vegetation indices 
that describe vegetation activity and its energy status, allowing 
the development of algorithms for the estimation of ET. Another 
advantage is that with a high spatial resolution over wide areas 
these products are also significantly cheaper than maintaining 
ground-based monitoring stations. Furthermore, the spatial 
data are associated, in many products, with temporal records 
that allow the construction of spatial time series (Jovanovic et 
al., 2014).

The MOD16 product, which estimates global ET from ground-
based meteorological observations and remote-sensing data from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite (Justice et al., 2002), holds potential for application in 
hydrological studies in data-scarce arid and semi-arid regions. 
The MOD16 product provides ~1 km2 global land surface ET 

datasets for vegetated land areas at 8-day and monthly intervals 
(Mu et al., 2011). This EO product is particularly attractive 
because data are readily available for the past in the form of 
a time series starting in 2000. The model is based on sound 
physical principles and takes into account evaporation from 
both the soil and plant canopies, from wet and dry surfaces, and 
for day and night periods.

The importance of ET data in water management, and the 
increasing availability of new techniques to quantify ET, fuels 
the need to evaluate the methods used to estimate it, particularly 
at large spatial scales, i.e., the catchment scale. Inter-model 
comparisons are often used when direct field measurements are 
not available and they are based on the premise that one of the 
models provides results that are sufficiently reliable. This study 
aims to compare the spatial and temporal characteristics of the 
MOD16 ET dataset and the ET quantified with a calibrated and 
validated water balance model, i.e., JAMS/J2000 (Krause, 2002). 
This will inform the potential use of the MOD16 ET dataset 
and/or the JAMS/J2000 model in water resource management 
activities in a data-scarce semi-arid region of the Western Cape 
(South Africa).

METHODS

The case study was conducted for the period 2008 to 2010 
in the Sandspruit River catchment, a tributary of the Berg 
River. Climatic conditions evident during the study period 
are representative of average conditions experienced in the 
catchment. The approach utilises data at monthly and annual 
temporal scales, and at catchment and modelling-unit spatial 
scale.

Test catchment: Sandspruit River basin

The Sandspruit catchment forms part of quaternary catchment 
G10J (based on the classification of the South African Department 
of Water and Sanitation), which is located in the Western Cape 
Province of South Africa, approximately 80 km north-east of 
Cape Town (Fig. 1). It is a seasonal stream, which only flows 
between the months of June and November, with a catchment 

Figure 1. The location of the Sandspruit catchment in the Western Cape (South Africa). The climate stations in the area are shown with red dots. 
MB: Moorreesberg; LG: Langgewens; DH: De Hoek; LD: Landau; VV: Voëlvlei; SP: Sandspruit; OK: Oranjeskraal; ZB: Zwavelberg.
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area of approximately 152 km2. The physiographic conditions 
present in the Sandspruit catchment are representative of those 
in the mid- to lower reaches of the Berg River catchment (Fig. 
1). The Berg River is a pivotal source of fresh water to Cape 
Town, the irrigated agricultural sector and the towns of Paarl, 
Wellington and Saldanha. Comprehensive management of the 
water resources in the catchment is therefore vital.

The topography of the Sandspruit catchment is relatively 
flat, exhibiting a gently undulating surface. Land use in the 
Sandspruit catchment is dominated by rain-fed agriculture 
and pastures. The catchment falls within the ‘bread basket’ of 
South Africa and wheat is the main crop produced in the area. 
However, the growing of lupins (L. mutabilis) and canola (B. 
napus) is not uncommon. Farmers in the area generally follow 
a 3-year planting rotation wherein cultivation only occurs every 
3rd year. Lands are left fallow between planting rotations and 
used for grazing. Soil erosion is minimized by the use of man-
made anti-erosion contour ridges, which are evident throughout 
the catchment (Bugan et al., 2015).

The Berg catchment experiences a semi-arid Mediterranean 
climate with warm dry summers and cool wet winters. Rainfall 
is of a cyclonic nature, extending normally over a few days with 
significant periods of clear weather in between. Little rain falls 
during summer, with the rainy season extending from May 
through to October. Precipitation is generally in the form of 
frontal rain approaching from the northwest. Mean annual 
precipitation in quaternary catchment G10J was 460 mm∙a–1 

(DWAF, 2003). Winter extreme minimum temperatures vary 
from 2°C to 4°C and summer extreme maximum temperatures 
vary from 38°C to 40°C. The Sandspruit catchment is 
representative of an area where ET is limited by the availability 
of soil water. Due to the semi-arid climate in the area, ET is a 
major component of the water balance, accounting for about 
94% of rainfall (Bugan et al., 2012). Sparse point measurements 
of reference ET are available for the mid- to lower reaches of the 
Berg River catchment, which provides motivation for the use 
of EO data. Additionally, the fact that the area may generally 
be characterised as water limited provides further motivation 
for the use of remote-sensing data as, according to Glenn et al. 
(2011), remotely sensed ET data is more accurate in areas which 
exhibit fairly uniform water availability characteristics.

Hydrological model: JAMS/J2000

JAMS/J2000 is a meso- to macro-scale hydrological model 
developed at the Friedrich-Schiller University Jena (Germany). 
The model simulates the water balance in river basins at a daily 
time scale. It simulates the hydrological cycle in a spatially 
distributed process-orientated manner, with the model core 
focusing on runoff generation and concentration. The model 
accounts for the heterogeneity of a catchment’s environmental 
parameters (Krause, 2002). The concept of the JAMS/J2000 
model was extensively described by Steudel et al. (2015) and 
Krause et al. (2009). This model was chosen for two main 
reasons: (i) it was previously applied to the selected catchment 
and showed good performance; (ii) its open-source nature 
allowed for the incorporation of a local particularity like man-
made anti-erosion contour ridges to the soil water movement 
simulation (Steudel et al., 2015).

JAMS/J2000 subdivides the catchment into hydrological 
response units (HRUs; Flügel, 1996). HRUs are defined as 
distributed, heterogeneously structured entities having a 
common climate, land use, and underlying pedo-topo-geological 
associations controlling their hydrological transport dynamics 
(Flügel, 1996). For the delineation of HRUs the following data 
were used: digital elevation model (90 × 90 m, USGS, 2003), land 

use (30 × 30 m, CSIR and ARC, 2005), soils (1:50 000, Görgens 
and De Clercq, 2006) and geology (1:1 000 000, Visser, 1989). 
Consequently, each HRU has associated properties (e.g. soil, 
topographic, hydrogeological, etc.). During the set-up of the 
JAMS/J2000 model for the Sandspruit catchment, the catchment 
was subdivided into 1 660 HRUs (Fig. 2) using the methodology 
described in Steudel et al. (2015).

The JAMS/J2000 model is able to simulate catchment distributed 
rainfall, interception, ET, snow accumulation and ablation, 
horizontally differentiated soil water and groundwater 
dynamics, distributed runoff generation and flood routing in 
the catchment’s river network (Krause et al., 2006). Reference 
ET is calculated according to the Penman–Monteith equation 
(Monteith, 1965). The input required by the Penman–Monteith 
equation is provided by climate input data and the parameters 
of the specific vegetation class of each HRU. The calculation 
of potential ET (PET) considers physical constraints (e.g. solar 
radiation, air temperature and wind speed) as well as vegetation 
specific parameters (e.g. aerodynamic resistance, canopy 
resistance and effective height). The seasonal dynamics of these 
vegetation parameters are derived by continuous functions, 
which are extrapolated from discrete values obtained from 
various literature sources (Krause, 2002). JAMS/J2000 also 
incorporates algorithms to calculate missing climatic input data, 
e.g., the net radiation, actual and saturated vapour pressure, 
heat fluxes and absolute humidity. During the simulation, ET 
is calculated as a function of PET and actual soil moisture 
(simulated), using either a linear or non-linear relationship.

The model was set up for the period 1 January 2000 – 31 December 
2010. The simulation period was subdivided as follows:

•	 Model initialisation (1 January 2000 – 16 July 2008)

Figure 2. The hydrological response units (HRU) delineated for the 
Sandspruit catchment
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•	 Model calibration (17 July 2008 – 31 December 2009). 
Model calibration was performed using both manual and 
automatic techniques. Manual calibration was performed 
by adjusting model input parameters within a specific 
range at pre-defined intervals, and subsequently comparing 
the model response to observed data. Automatic model 
calibration of the JAMS/J2000 model was performed 
through a semi-automated assistant, i.e., OPTAS (Fischer 
et al., 2009). A detailed explanation of the manual and 
automatic calibration procedures, as well as the final model 
parameter values, is presented by Bugan (2014).

•	 Model validation (1 January 2010 – 31 December 2010)

The short calibration and validation periods create uncertainty 
as to whether the model is able to accurately simulate the range 
of hydrological and climatic conditions experienced in the 
catchment. The length of these periods was however restricted 
as a result of limited input data series.

The model requires daily values of precipitation (mm), minimum 
and maximum air temperature (°C) , wind speed (m∙s–1), relative 
humidity (%) and sunshine hours (h). Input data were acquired 
from climate stations located in the vicinity of the Sandspruit 
catchment (Fig. 1 and Table 1). These stations are managed by 
the Agricultural Research Council (ARC) for the weather data 
and the Department of Water and Sanitation (DWS) in South 
Africa for the streamflow records. Three weather stations 
were installed within the catchment, namely, Sandspruit (SP), 
Zwavelberg (ZB) and Oranjeskraal (OK) (Fig. 1 and Table 1). 
The model utilized regionalisation methods, e.g. inverse 
distance weighting interpolation, to spatially distribute these 
point measurements. The Sandspruit station malfunctioned 
on 27 September 2010. Subsequently, precipitation data for 
the period 27 September 2010–31 December 2010 were infilled 
using a regression relationship with the Zwavelberg station (R2 
= 0.67). When no precipitation was recorded at Zwavelberg, it 
was assumed that none occurred at Sandspruit. To allow for an 
extended model initialisation and simulation period, climate 
data for the period 1 January 2000–12 June 2007 (Sandspruit) 
and 1 January 2000–16 February 2009 (Oranjeskraal and 
Zwavelberg) were calculated using regression analysis against 
stations located outside the catchment.

The model also requires observed runoff data with which 
to evaluate the simulated runoff results as the objective 
function. Station No. G1H043 is located immediately adjacent 
to Station SP (Fig. 1) and is managed by DWS. The model 
was parameterised using the results from numerous field 
investigations conducted in the study area (Flügel, 1995; Fey 
and De Clercq, 2004; Bugan, 2008; De Clercq et al., 2010; 
Bugan et al., 2012; De Clercq et al., 2013).

Satellite-derived evapotranspiration

The MOD16 ET product is created using MODIS global landcover 
(MOD12Q1), a daily meteorological re-analysis dataset from 
NASA’s Global Modelling and Assimilation Office, and MODIS 
biophysical parameters (albedo, leaf area index, and an enhanced 
vegetation index) as inputs into the Penman-Monteith equation 
(Mu et al., 2011). The algorithm for MOD16 ET was developed 
by Mu et al. (2007a) and Mu et al. (2007b) from the original 
model of Cleugh et al. (2007), and later improved by Mu et al. 
(2011). According to McCabe and Wood (2006), the MODIS 
products exhibit limited capacity in capturing the spatial 
variability in fluxes at high resolution, however, estimates for 
the spatial average flux at large scales may be accurate. Mu et al. 
(2011) compared MOD16 data with ET measurements from 46 
AmeriFlux eddy covariance flux towers located across 7 biomes. 
Mean average errors of 0.33 mm∙d–1 (24.10%) were reported and 
correlation coefficients of 0.86. According to Mu et al. (2011), this 
error margin is within the accuracy range, i.e. 10–30%, expected 
from remote-sensing methods (Kalma et al., 2008). According to 
Glenn et al. (2011) MODIS-derived ET maps were able to capture 
the general actual ET, derived from meteorological data, features 
and trends derived at a continental scale in Australia. Although 
absolute values of MOD16 ET may be questionable under certain 
conditions (e.g. in mountainous regions or in very water-limited 
landscapes) and require extensive validation in semi-arid areas, 
the relative values of MOD16 may be useful in identifying 
temporal and spatial trends of ET (Jovanovic et al., 2015).

Hydrological model efficiency calculation

The criteria which were used to evaluate the objective runoff 
function during the calibration and validation of the hydrological 
model were the Nash-Sutcliffe Efficiency (NSE) (Nash and 
Sutcliffe, 1970), the coefficient of determination (R2) and the 
Index of Agreement (IOA; Willmott, 1981). This is in accordance 
with recommendations made by Janssen and Heuberger (1995), 
Krause et al. (2005) and Wagener et al. (2003):

•	 The NSE is a commonly used measure of model efficiency. 
Values for NSE vary from negative infinity to 1. A value of 
1 indicates a perfect fit between observed and simulated 
data, while a value < 0 implies that the simulated value is 
(on average) a poorer predictor than the long-term average 
of the observations. A NSE of 0.4–0.6 is classified as 
satisfactory and a value > 0.6 is classified as good.

•	 The coefficient of determination (R2) is defined as the 
squared value of the coefficient of correlation (Krause et 
al., 2005). The coefficient of determination ranges between 
0 (no correlation) and 1 (perfect fit). It should, however, be 
used with caution as a model which systematically over- or 
under-predicts may still exhibit an acceptable R2 value.

Table 1. Climatic data from the Sandspruit catchment used as inputs in the JAMS/J2000 hydrological model

Climate 
station

Latitude(°)
Longitude 

(°)
Elev.

(m amsl)
Parameter

Data record length
P (mm) TMin TMax WS (m∙s–1) RH (%) SH (h)

DH −33.15000 19.03330 126 * 01/01/1987 – 31/12/2011
LG −33.28330 18.70000 191 * * 01/01/1987 – 31/12/2011
MB −33.15000 18.68333 199 * * * * * 01/01/1987 – 31/12/2011
SP −33.16110 18.89220 42 * * * 13/06/2007 – 27/09/2010
OK −33.25757 18.80806 118 * * * 17/02/2009 – 31/12/2011
ZB −33.34896 18.81472 278 * * * 17/02/2009 – 31/12/2011
LD −33.57783 18.96795 126 * * 01/01/1987 – 31/12/2011

P: precipitation; TMin: minimum temperature; TMax: maximum temperature; WS: wind speed; RH: relative humidity; SH: sunshine hours; *: particular 
parameter is measured at the climate station.
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•	 The IOA (Willmott, 1981) aims to overcome the insensitivity 
of the NSE and R2 to differences in the observed and 
simulated means and variances (Legates and McCabe, 
1999). The IOA ranges between 0 and 1, with a value of 0 
representing no correlation and 1 a perfect fit. A value > 
0.60 is regarded as representing a good fit between observed 
and simulated values.

Data analysis

The statistical analysis employed aimed to identify similarities 
and differences between the datasets. The relative agreement 
(e.g. correlation) as well as the absolute agreement (e.g. standard 
difference) was considered. The pixels of MOD16-ET monthly 
data were transformed to the HRU spatial pattern and resolution 
to allow for comparison with the simulated ET results of the 
JAMS/J2000 model. The process was to overlay the HRU areas 
(Fig. 2) and the MOD16-ET pixel areas in order to extract the 
spatial mean of geographically coincident data (ESRI, 2011). The 
extracted monthly datasets were subsequently aggregated to 
annual values for comparison of annual ET data, producing two 
temporal scales of analysis. Also, two different spatial scales of 
analysis were considered, i.e., the HRU scale mentioned above 
and an aggregation to basin scale.

Precipitation and ET estimates were aggregated at the basin 
scale for each year (2008–2010) to explore the mean basin 
behaviour. Precipitation represents the water input to the basin 
and is therefore a key variable to consider in the understanding 
of ET dynamics, and therefore the ratio between ET and 
precipitation was analysed. To study the temporal variations 
between years, monthly values of precipitation and ET were 
calculated at the basin spatial scale for the study period (36 
months). In addition to these variables, two ancillary variables 
were incorporated to aid in the interpretation of the temporal 
behaviour of the ET estimates. These variables were: JAMS-
SoilSat (average soil saturation simulated with JAMS/J2000) 
and SPOT-NDWI. JAMS-SoilSat represents the availability 
of water in the basin’s soils, according to the JAMS/J2000 
hydrological model. SPOT-NDWI is the Normalized Difference 
Water Index computed with data and an algorithm which is 
different from MODIS satellite NDVI. This index was developed 
specifically for Africa by the European Union Framework 
Programme 7 VGT4Africa project (VGT4Africa, 2013) from 
a cloud-free 10-day composite. SPOT-NDWI has been tested 
in the vicinity of the study area by Jovanovic et al. (2014) and 
represents an independent indicator of the water-vegetation 
status. Due to its similitude with the Normalized Difference 
Vegetation Index (NDVI), which is used in the MOD16-ET 
algorithm, SPOT-NDWI was selected as an independent tool to 
analyse plant phenology and to aid in the understanding of its 
role in the MODIS-ET calculation. SPOT-NDWI is a proxy for 
vegetation response, varying from −1 to 1, where higher values 
relate either to surface water (not occurring in the study area) 
or to the water captured by surface vegetation (interception). 
In the latter case, higher SPOT-NDWI represents heathier 
vegetation that is storing water in it leaves and green tissue. A 
similar response as the NDVI is expected, with higher values 
meaning that the plant has more leaves with available water for 
transpiration, and also higher ET rates.

The data analysis further included:

•	 Cross-correlations between precipitation, JAMS-ET, 
MOD16-ET, JAMS-SoilSat and SPOT-NDWI were 
performed to analyse and identify the lags with the maximum 
coefficients of correlation. Given that observations are 
temporally dependent, to test the significance of simple 
correlation coefficients a mixed linear regression model 

was used which considers the temporal correlation between 
observation pairs through the modelling of the residual 
covariance matrix. Several models accounting for temporal 
dependency were fitted and the autoregressive structure 
of order 1 was chosen as the best, to take into account 
the temporal correlation in the datasets according to the 
Akaike Information Criteria (AIC; Littell et al., 2006). All 
models were fitted by restricted maximum likelihood using 
the ‘nlme’ library of the R software (Pinheiro et al., 2017).

•	 To analyse the association between both ET estimates 
and precipitation at the HRU level, spatial datasets which 
represent the total annual ET estimated in each HRU for 
each year in the study period were produced. The correlation 
between JAMS-ET, MOD16-ET and precipitation in each 
year was evaluated with the Partial Mantel Test (Smouse 
et al. 1986), to take into account the spatial correlation 
among HRUs. The Partial Mantel Test is aimed at assessing 
the dependence between two matrices of distances while 
controlling the effect of a third distance matrix, which in 
our case contained geographical (Euclidean) distances 
between the centroids of HRUs. Euclidean distances were 
calculated with the ‘bioDist’ library (Ding et al., 2008) and 
Partial Mantel Tests were performed with ‘vegan’ (Oksanen 
et al., 2013) in the R software.

RESULTS AND DISCUSSION

JAMS/J2000 hydrological simulation

The efficiency criteria of the runoff simulation for the calibration 
and validation periods are presented in Table 2. In terms of the 
model performance evaluation criteria, the model exhibited 
good results during the calibration and validation periods, i.e., 
a good correlation between the daily simulated and observed 
streamflow volumes was observed. A NSE of 0.61 and 0.72 during 
calibration and validation, respectively, is indicative of a fairly 
good representation of runoff responses by the model. The IOA, 
which is able to account for the insensitivity of the NSE and R2 to 
differences in the observed and simulated means and variances 
(Krause et al., 2005), was 0.77 and 0.80 during calibration and 
validation, respectively, which confirms the sensitivity of the 
model to extremes.

The observed and simulated streamflow are presented in Fig. 3. 
Good correspondence between observed and simulated runoff 
was observed (Fig. 3) in terms of temporal runoff dynamics. 
The model was able to represent the timing of initiation of 
increased runoff during winter. High peaks in the simulated 
runoff dataset correspond well with those of the observed runoff 
and pronounced rainfall events (Fig. 3). In general, the model 
under-estimated runoff volumes during extreme rainfall events. 
The model was also not able to entirely replicate the ephemeral 
characteristic of the Sandspruit River, as baseflow was simulated 
during the summer months. The simulation of baseflow during 
the dry summer months may be attributed to the use of linear 
storages by the model, which are never empty but decrease 
towards an asymptotic value. The simulated baseflow values are 
however interpreted to be within the same order of magnitude 
as further downstream migrating groundwater which is not 
captured by the gauge.

Table 2. Streamflow simulation efficiency criteria

Performance criteria Calibration Validation

NSE 0.61 0.72

R2 0.62 0.73

IOA 0.77 0.80
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Bugan et al. (2012) quantified ET in the Sandspruit catchment, 
using a water balance approach, to be 492 mm and 407 mm 
during 2008 and 2009, respectively. These values are within 
the same order of magnitude as the JAMS-ET values, i.e., 506 
mm and 408 mm, respectively. The ET clearly follows a seasonal 
pattern. It is highest during the winter months, i.e., May to 
September, during which water availability is highest. The 
seasonal monthly high was observed during September. JAMS- 
ET also exhibited a response to extreme rainfall, e.g., November 
2009 and February 2010.

Comparison of JAMS-ET and MOD16-ET estimates at 
basin level

The annual balance between precipitation and evapotranspiration 
for the Sandspruit catchment is presented in Table 3 as a whole 
basin area spatial mean. The dominance of ET in terms of the 
catchment water balance was well replicated by the JAMS-ET 
and MOD16-ET models. On average, JAMS-ET accounts for 
94% of precipitation while MOD16-ET represents 82%. This 
relationship between ET and precipitation is in accordance with 
results presented by Bugan et al. (2012). It should, however, be 
noted that JAMS-ET is calibrated against observed runoff, and 
therefore it is assumed that, because a good correlation is evident 
between the observed and simulated runoff, all processes 
within the model are being adequately represented. JAMS-ET 
is calculated as a function of the soil water content, which is 
required to be parametrized spatially and may be a source of 
error.

Both estimates produce a positive annual water balance at the 
basin scale, i.e., a surplus of water exists. During 2008 JAMS-ET 
amounted to 91%, while MOD16-ET amounted to 69% of 
precipitation. The annual total precipitation was lower in the 
subsequent years, i.e., 441 mm in 2009 and 386 mm in 2010. The 
ET estimates followed this pattern in 2009 and 2010 (Table 3). 
As the annual total precipitation decreases, it is noticeable that 
the difference between the ET estimates minimises and that 
ET represents a higher percentage of precipitation in the water 
balance.

Monthly total ET calculated with the two estimation methods 
and the ancillary variables are graphed in Fig. 4. Rainfall is 

highest in the winter months, i.e., May to September, and 
therefore during these months water availability is the highest. 
The seasonal monthly high for JAMS-ET and MOD16-ET was 
observed during August/September. The results of the cross-
correlations (lags and maximum correlation coefficients) are 
shown in Table 4. The maximum correlation coefficient between 
JAMS-ET and MOD16-ET was 0.82 and it was evident at Lag 0, 
showing that both ET estimates are in phase when evaluated at 
the basin scale (p < 0.001). The maximum correlation coefficients 
between the ET estimators and precipitation were 0.67 and 0.70 
for JAMS-ET and MOD16-ET, respectively, and this was evident 
at Lag 2 (1 lag is 1 month) for both methods. This suggests 
that there is a 2-month delay in the maximum response of ET 
to precipitation (p < 0.001). These results show that both ET 
estimations are similarly correlated with precipitation at the 
basin scale and are also subjected to similar delays in response.

However, as Fig. 4 shows, MOD16-ET did not exhibit a similar 
response to pronounced rainfall during the dry summer 
months as JAMS-ET did, e.g., November 2009 and February 
2010. In those atypically wet summer months, JAMS-ET 
increases and MOD16-ET does not. The lack of delay in the 
JAMS-ET response to the peak in precipitation indicates that it 
is probably more related to higher soil evaporation rates than 
to transpiration, i.e., if it were more related to transpiration 
then a delay would be evident which is related to plant growth.

Maximum correlation coefficients between SPOT-NDWI, the 
external variable used as a plant phenology proxy, and both ET 
estimates were found at Lag 0 (r = 0.80 and r = 0.95 for JAMS-ET 
and MOD16, respectively). However, the maximum correlation 
coefficients between both ET estimates and precipitation and 
JAMS-SoilSat were found at Lags 2 and 1, respectively (Table 4). 
The cross-correlation results indicate that at a monthly scale 

Figure 3. Observed runoff at Station No. G1H043 in the Sandspruit catchment and runoff simulated with the JAMS/J2000 hydrological model

Table 3. Annual precipitation inputs and evapotranspiration outputs 
for the Sandspruit catchment

Year Precipitation (mm) JAMS-ET (mm) MOD16-ET (mm)

2008 556 506 381

2009 441 408 364

2010 386 378 364
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of observation a peak in precipitation is followed by a peak in 
JAMS-SoilSat approximately 1 month later. Approximately 2 
months after the peak in precipitation, the SPOT-NDWI and 
both ET estimates exhibit an increase. This provides evidence of 
a close relation between both ET simulations and plant growth 
(Fig. 4). Dzikiti (2016) states that the MOD16-ET is particularly 
sensitive to the leaf area index which peaks towards the end of 
winter/early spring. At the whole basin scale of analysis, there is 
an acceptable level of agreement in the ET estimates produced 
by the models. Differences are mainly evident during extremely 
wet periods (e.g. August–September 2008, November 2009 
and May–June 2010). The average monthly difference between 
JAMS-ET and MOD16-ET was 5 mm. During the periods April–
September (wetter months) the average monthly difference was 
8 mm, whereas during the drier months (October to March), it 
was 3 mm. Both models seem to be driven by plant attributes 
such as the leaf area index and canopy conductance which both 
influence the transpiration component, however JAMS-ET 
shows a closer relation to rainfall than MOD16-ET (Table 4). 

The observation of a peak in JAMS-SoilSat after the general 
initiation of precipitation and before the peak in simulated ET 
represents a realistic representation of the soil water balance 
dynamics, as this is in accordance with field observations (De 
Clercq et al., 2013). It is important to simulate this process 
accurately, because this storage provides water for plant growth, 
ET and runoff generation.

Additional indicators of the level of agreement between 
JAMS-ET and MOD16-ET are presented in Table 5. In terms of 
the R2 and the NSE it is evident that over the entire period of 
analysis there is an acceptable level of agreement between the 
JAMS-ET and MOD16-ET datasets. The datasets also exhibit 
a relatively similar standard deviation (STDEV). The root 

Figure 4. Monthly values of JAMS-ET (blue line), MOD16-ET (red line), SPOT-NDWI (black line), JAMS-SoilSat (yellow line), and catchment-
averaged precipitation (bars) for the Sandspruit catchment

Table 4. Cross-correlation results. Values represent the lag at which 
the maximum correlation was detected, which is presented between 
parentheses (r)

JAMS-ET MOD16-ET Precip. JAMS-SoilSat

MOD16-ET 0 (0.82)

Precip 2 (0.67) 2 (0.70)

JAMS-SoilSat 0 (0.77) 1 (0.87) 1 (0.78)

SPOT-NDWI 0 (0.80) 0 (0.95) 2 (0.73)   1 (0.88)

Table 5. Statistics associated with a comparison of JAMS-ET and 
MOD16-ET at a monthly scale from 2008–2010.

Month RMSE (mm) MAE (mm)
January 8.08 7.55

February 6.14 5.55

March 7.33 6.11

April 3.77 3.57

May 13.86 13.86

June 23.16 22.49

July 8.10 7.52

August 8.53 7.83

September 34.66 27.65

October 6.60 5.70

November 24.42 20.34

December 1.94 1.61

Summary statistics JAMS-ET MOD16-ET

Mean (mm∙month–1) 35.89 30.81

Median (mm∙month–1) 38.06 24.36

Min (mm∙month–1) 2.20 10.71

Max (mm∙month–1) 121.90 76.57

STDEV (mm∙month–1) 25.28 20.16

RMSE (mm∙month–1) 15.50

MAE (mm∙month–1) 10.82

R2 0.66

NSE 0.62
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mean square error (RMSE) and mean absolute error (MAE) 
are commonly used as a measure of the difference between 
predicted/simulated and observed values. The RMSE and MAE 
of the monthly average (2008–2010) JAMS-ET data as compared 
to the MOD16-ET data are also shown in Table 5. The largest 
variations, in terms of the RMSE and MAE, occur in the months 
of May, June, September and November. This is also evident in 
Fig. 4 and is interpreted to be a result of increased dependence 
of JAMS-ET on extreme rainfall, e.g., June 2008, September 
2008, November 2009 and May 2010. However, the RMSE, in 
particular, is sensitive to single large outlier values (Munch et 
al., 2013). The overall RMSE and MAE were calculated to be 
15.49 mm∙month–1 and 10.82 mm∙month–1, respectively. 

Spatial distribution of ET estimates

The spatial distribution of the mean annual rainfall (mm), which 
was calculated for each HRU during the simulation period, is 
presented in Fig. 5. The spatial distribution of rainfall is a 
function of elevation and the distance from the coastline. Thus, 
rainfall decreases from south to north/north-west and from 
west to east. Also in Fig. 5, the mean NDVI for the same period, 

computed from the MODIS product (MOD13Q1) at a 250 m 
spatial resolution, is presented. This NDVI is the 3-year mean of 
every 16-day image in the period and higher (darker) values are 
representative of higher primary productivity.

The spatially distributed JAMS-ET is presented in Fig. 6 (a, b, 
c) for the years 2008 to 2010, while Fig. 6 (d, e, f) presents the 
results for the MOD16-ET product. The spatial distribution of 
JAMS-ET exhibits a similar pattern as the spatially distributed 
precipitation. However, the spatially distributed MOD16-ET 
differs from JAMS-ET and no clear spatial correlation is evident 
with rainfall (Fig. 5). Partial Mantel tests results (Table 6) 
confirm that no correlation is found between precipitation 
and MOD16-ET (p > 0.25) when analysed at the HRU level in 
any of the three studied years, whereas JAMS-ET does show a 
significant and high correlation with precipitation at the HRU 
level in each of the three studied years (r > 0.83, p < 0.0001). This 
provides further evidence of the strong correlation between 
JAMS-ET and precipitation. At the basin level both ET estimates 
correlate well with precipitation, as expected. These results show 
the importance of analysing results at various spatial scales.

Figure 5. Mean precipitation in the catchment corresponding to each hydrological response unit (HRU) for the 2008–2010 period (left). Mean 
NDVI for the same period estimated from the MOD13Q1 product, 250 m resolution and 16 daily (right).

Table 6.  Partial Mantel test coefficients of correlation and p-values between MOD16-ET, JAMS-ET and precipitation in each year of the study 
period at the HRU scale

Year Correlation coefficient p-value

MOD16-ET Precipitation 2008 −0.03 0.987

2009 −0.12 1

2010 0.01 0.2555

JAMS-ET Precipitation 2008 0.89 0.0001

2009 0.84 0.0001

2010 0.93 0.0001

JAMS-ET MOD16-ET 2008 0.02 0.0278

2009 −0.14 1

2010 0.01 0.2682
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ET estimates are also influenced by land cover (Fig. 7). JAMS-ET 
and MOD16-ET use different land cover source data as inputs, 
and therefore the results are produced at different spatial 
resolutions and exhibit different land cover classes. However, 
in this case, the land cover datasets are generally in agreement, 
considering that most of the catchment is cultivated cropland, 
with the exception of the south-eastern tip of the catchment 
where natural vegetation occurs, coinciding with the wettest 
areas of the catchment as is shown in Fig. 5. The spatial 
distribution of JAMS-ET correlates well with land cover, while 
MOD16-ET exhibits some variation in this regard. The perennial 
deep-rooted vegetation, i.e., deciduous forest, mixed forest and 
shrub vegetation are expected to exhibit higher ET rates than the 
annual cultivated lands.

It should also be borne in mind that the land cover maps shown in 
Fig. 7 are related more to the land use than the actual vegetation 
cover at the time of ET estimation. For both models, the land 
cover is an environmental characteristic that is static throughout 
the simulation (in all time-steps). In reality, the cultivated land is 
managed to include land rotations of crops/winter wheat (every 
3rd year) and fallow periods, during which vegetation is allowed 
to re-grow for animal grazing. Both models do not consider this 
land management practice. The wheat is generally planted in late 
April/early May each year, reaches full canopy development in 
September, and is harvested in November. The results of previous 
studies (De Clercq et al., 2010) indicated that ET of wheat is 
the highest at the stage of full canopy development, i.e., in 
September. At this phenological stage, the ET rates are very close 

to reference ET (Allen et al., 1998) values. In summer, the ET is 
lower than the reference ET and, as no canopy cover is present at 
this time (fallow land), the ET predominantly consists of the soil 
evaporation component. The MOD16-ET product uses the NDVI 
in its algorithm, i.e., a vegetation index that works as a proxy for 
vegetation status, health and phenology. Resultantly, the cross-
correlation between SPOT-NDWI and MOD16-ET is in phase 
(Table 4), with both exhibiting peak values in September. This 
information and the spatial pattern in Fig. 6 (d,e,f) are strong 
indicators that the MOD16-ET is capturing the actual land 
management (cover) during a particular time period. When the 
annual JAMS-ET and MOD16-ET maps were compared with the 
Partial Mantel test no correlation was observed between both ET 
estimates at the HRU spatial scale in 2009 and 2010 (Table 6). 
In 2008 a statistically significant correlation was found but 
with a very small correlation coefficient (r = 0.02), showing that 
MOD16-ET and JAMS-ET exhibit different spatial distributions. 
The largest differences (an average of 200 mm∙a–1) were observed 
in the south-eastern areas of the catchment, where the land 
cover differs from cultivated lands.

To better understand the relationship between the simulated 
ET and precipitation, the distributed weight of ET in the annual 
water balance was calculated as a percentage of rainfall (Fig. 8). 
It is evident that throughout the basin JAMS-ET shows minimal 
variation, with values between 80% and 95% of rainfall (Fig 
8 a, b and c). Modelling units with a negative water balance 
are evident, i.e., ET is greater than rainfall. This is generally 
restricted to HRUs which are likely to receive water from 

Figure 6. Spatially distributed actual evapotranspiration simulated with the JAMS/J2000 model (JAMS-ET, top figures) and simulated with 
MOD16 (MODIS-ET, bottom figures) for each hydrological response unit (HRU) of the Sandspruit catchment during the period 2008–2010
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upslope contributing areas. The distribution of modelling units 
with a negative water balance is more pronounced in 2010, 
which is interpreted to be a result of the low rainfall during this 
year. When analysing the relationship between the total annual 
ET and rainfall, MOD16-ET exhibits more spatial variability 
when compared to JAMS-ET (Fig. 8). Similarly to JAMS-ET, 
ET is a larger proportion of rainfall during drier years and the 
observation of modelling units with a negative water balance 
is also more evident during drier years (Fig. 8e, f). The results 
presented in Fig. 8 provide further evidence that JAMS-ET is 
strongly influenced by rainfall. MOD16-ET, on the other hand, 
exhibits more sensitivity to land use through the NDVI. Thus, 
MOD16-ET may exceed the rainfall, which is only realistic if 
groundwater is present at shallow depths or if the area receives 
water from upslope contributing areas. In wetter years (Fig. 8 d), 
the use of MOD16-ET results produces a generally positive water 
balance, i.e., ET is generally 50–70% of precipitation.

JAMS adopts modules from SWAT (Arnold et al., 1998) for 
vegetation growth, including a generic database of crop/
vegetation parameters. In the JAMS simulation, crop/vegetation 
parameters were assigned to HRUs based on land cover in the 
Sandspruit catchment. Wagner et al. (2011) highlighted that the 
parameters to model plant growth in SWAT were developed 
for temperate regions and may thus not be suitable for other 
climates, such as those occurring in arid and semi-arid regions, 
because the ET dynamics which are subjected to extreme 
variations in water availability and available energy may not be 
replicated adequately by the model. It is argued that the pattern 
of MOD16-ET driven by vegetation characteristics may be more 
realistic than the JAMS/J2000-ET, which is driven more by 
rainfall, given the developmental stages of wheat and pastures.

It should be highlighted that with the increase in the range of 

available remote-sensing products, it is important to evaluate 
the accuracy and uncertainty associated with these products 
before using them in particular studies. This is commonly done 
through a comparison of EO data and ground-measured data. 
According to Jovanovic et al. (2015), the MOD16 ET data product 
has not been widely used to estimate ET in Africa, especially 
in arid and semi-arid regions. Munch et al. (2013) stated that 
there are limited amounts of observed data available to evaluate 
the MOD16 ET data product. Gibson et al. (2013) also stated 
that limited studies documenting the validation of MOD16 ET 
in Africa have been published to date. Detailed validation of 
MOD16 ET should therefore be recognised as a research priority 
in South Africa.

CONCLUSIONS

With the increased occurrence of drought, there is a need to 
monitor ET as part of water balance assessments and scenario 
simulations for management planning. EO products are able 
to provide estimates of ET from irrigation areas, open water, 
dryland, plantation areas, wetlands, etc. (King et al., 2011). 
The provision of such data allows for the analysis of spatial and 
temporal trends in ET. In this study, the spatial and temporal 
characteristics of the MOD16 ET dataset and the ET quantified 
with a distributed water balance model, i.e., JAMS/J2000 
(Krause, 2002) were compared and evaluated for the estimation 
of ET in the semi-arid Western Cape. The following can be 
concluded from the results:

•	 Streamflow of the Sandspruit River was simulated 
reasonably well by the JAMS/J2000 model, with 
performance criteria (NSE, R2 and IOA) generally within 
the acceptable range. The model was not able to entirely 
replicate the ephemeral characteristic of the Sandspruit 

Figure 7. Land cover in the Sandspruit catchment. The map to the left (a) is based on CSIR and ARC (2005) and the spatial distribution 
corresponds to each hydrological response unit (HRU). The map to the right (b) is based on the MODIS land cover data used in the calculations 
of MOD16
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River. Model parameterization considered the temporal 
behaviour of observed ET.

•	 JAMS and MOD16 annual values of basin average ET were 
generally consistent in years when annual rainfall was 
within the range of the long-term annual average.

•	 Monthly JAMS-ET and MOD16-ET dynamics are strongly 
influenced by the response of vegetation to precipitation 
as well as the atmospheric evaporative demand. Peaks in 
the datasets were observed in August/September when 
the maximum biomass was reached. MOD16-ET is less 
dependent on the seasonal distribution of precipitation and 
its anomalies.

•	 No clear spatial trend was evident when comparing 
JAMS-ET and MOD16-ET at the HRU scale. The largest 
differences occurred in areas with markedly different land 
cover, which underlines the importance of considering the 
actual land cover or management adequately.

The MOD16-ET product is recommended for capturing spatial 
patterns due to land management. As demonstrated with the 
dataset of Sandspruit catchment, the monthly spatio-temporal 
patterns of MOD16-ET driven by vegetation characteristics are 
realistic. The database of vegetation characteristics of the JAMS 
model could be updated in order to simulate more realistic land 
cover and agricultural management. However, this also means 
a higher input data requirement for the hydrological model. 
The current generic database of land cover and vegetation 

characteristics may still be preferred in most cases due to its 
simplicity, especially for long time series. The JAMS/J2000 
model appeared to be suitable to replicate the dynamics of 
runoff and ET. The JAMS model and its ET estimates were well 
correlated to vegetation characteristics and water movement 
through the catchment. JAMS is also sensitive to unusual 
summer rain events, which are barely captured by SPOT-NDWI 
and undetected by the MOD16-ET product.

In the face of high climatic variability, the complementary use of 
hydrological modelling and satellite-derived data may however 
be the best option. This will allow capturing the ET processes 
during both average condition and climatically anomalous 
years. The combination of hydrological modelling and satellite 
observations may aid in improving components of hydrological 
models, such as vegetation parameters. Great potential exists in 
assimilating MOD16-ET data as a direct input to a hydrological 
model, and thus contributing to a more realistic representation 
of the hydrological processes, in particular where hydrological 
data and inputs are scarce.
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