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ABSTRACT
Unsaturated soil hydraulic conductivity is a main parameter in agricultural and environmental studies, necessary for predicting 
and managing water and solute transport in soils. This parameter is difficult to measure in agricultural fields; thus, a simple 
and practical estimation method would be preferable, and quantitative methods (analytical and numerical) to predict the field 
parameters should be developed. Field experiments were conducted to collect water quality data to model the unsaturated hydraulic 
conductivity of a sandy loam soil. A mini disk infiltrometer (MDI) was used to measure soil infiltration rate. Input variables 
included electrical conductivity and the sodium adsorption ratio of irrigation water. Suction rate (pressure head), soil bulk density, 
and soil moisture content acted as inputs, with unsaturated soil hydraulic conductivity as output. The performance of Gaussian 
process regression (GPR) was analysed, with multiple linear regression (LR) and multi-layer perceptron (MLP) models used for 
comparison. Three performance criteria were compared: correlation coefficient (r), root mean square error (RMSE), and mean 
absolute error (MAE). The simulations employed the Waikato environment for knowledge analysis (WEKA) open source tool. The 
results indicate that the GPR with Pearson VII function-based universal kernel (PUK kernel), cache size 250007, Omega 1.0 and 
Sigma 1.0 performs better than other kernels when evaluating test split data, with a correlation coefficient of 0.9646. The RMSEs 
for GPR (PUK kernel), MLP, and LR were 1.16 × 10−04, 1.87 × 10−04, and 2.22 × 10−04 cm·s−1, respectively. Predictive data mining 
algorithms (DMA) enable an estimate of unknown values based on patterns in a database. Therefore, the present methodology can 
be put to use in predictive tools to manage water and solute transport in soils, as the GPR model provides much greater accuracy 
than the LR and MLP models in predicting the unsaturated hydraulic conductivity of a sandy loam soil. 
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INTRODUCTION

Water management is vital to improve the efficiency 
and sustainability of agricultural systems, as water is 
scarce in semi-arid regions such as Saudi Arabia. Soil 
hydraulic conductivity is a main parameter in agricultural 
and environmental studies (Gonçalves, et al., 2007). 
Unsaturated soil hydraulic conductivity controls water 
movement (Fatehnia et al., 2014), and measuring it is a 
challenging task, requiring costly, time-consuming, and 
skilled experimentation (Wosten and Van Genuchten, 1988; 
Malaya and Sreedeep, 2013). Various techniques have been 
developed to measure unsaturated hydraulic conductivity 
in the laboratory and in the field (Klute and Dirksen, 
1989). Unfortunately, laboratory studies using repacked 
soil may have limited use in predicting the effects of water 
characteristics on soil hydraulic properties (Menneer et 
al., 2001). Additionally, the number of measurements of 
unsaturated hydraulic conductivity required to adequately 
characterize an area can be prohibitive. Thus, it is better to 
have means to estimate, in a simple and practical manner, 
the unsaturated hydraulic conductivity (Mbonimpa et al., 
2004). The unsaturated hydraulic conductivity of soil could 
be estimated based on soil texture, the hydraulic conductivity 
of the soil, soil water properties, the amounts of gypsum and 
lime present, and the actual and apparent distributions of 
particle size (Zhuang et al., 2001). Moosavi and Sepaskhah 
(2012a) developed pedotransfer functions for prediction of 

unsaturated hydraulic conductivity. The most influential 
physical soil characteristics in prediction of soil hydraulic 
conductivity using pedotransfer functions were the soil 
particle fractions, bulk density, total soil porosity, and initial 
and near-saturated volumetric soil water content. Mainly, 
the unsaturated hydraulic conductivity measurements 
were achieved at diverse tensions of soil moisture (0.2, 
0.15, 0.1, 0.06, 0.03, and 0 m). The study results indicated 
that the pedotransfer function predictions of unsaturated 
soil hydraulic conductivities at all of the soil tensions 
were accurate enough for most applications, except for the 
measured unsaturated soil hydraulic at a tension of 0.1 m and 
to some extent at a tension of 0.03 m, which were less accurate 
than the other unsaturated soil hydraulic predictions. 

Neshat and Farhad (2012) carried out an experiment, using 
calculations to estimate the unsaturated hydraulic conductivity 
of a soil, to derive a relationship between the soil’s unsaturated 
hydraulic conductivity and its physical properties. Amer 
et al. (2009) proposed an equation to predict unsaturated 
hydraulic conductivity based on water viscosity, acceleration 
due to gravity, water density, ratio of total volume of pores, 
and the radius of equivalent cylindrical pore size. To predict 
the unsaturated hydraulic conductivity of soil, Moosavi and 
Sepaskhah (2012b) used an artificial neural network model 
with input parameters of sand, silt, clay, bulk density, soil 
organic matter, and initial and saturated volumetric water 
content. The study results showed that an artificial neural 
network model could accurately estimate the unsaturated 
hydraulic conductivity, and silt, clay, sand, bulk density, and 
soil organic matter were the most influential input variables.

Water quality has substantial effects on soil hydraulic 
conductivity and infiltration (Crescimanno et al., 1995; Springer 
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et al., 1999). Xiao et al. (1992) studied the effect of irrigation 
water quality on the unsaturated hydraulic conductivity of 
undisturbed soil in the field. Results showed that, within the 
operating soil suction range of disc permeameters (0–1.6 KPa), 
the higher the electrical conductivity of irrigation water, the 
higher the soil unsaturated hydraulic conductivity. Unsaturated 
hydraulic conductivity doubled when the electrical conductivity 
of irrigation water increased from 0.1 to 6.0 dS·m−1. Also, a 
high irrigation water sodium adsorption ratio (SARw) has an 
inverse effect on soil unsaturated hydraulic conductivity. Soil 
unsaturated hydraulic conductivity decreased with increasing 
SARw, especially when higher soil suction is present. Moosavi 
and Sepaskhah (2012c) reported that irrigating with low-quality 
water may change soil hydraulic properties due to excessive 
electrical conductivity and water sodium-adsorption ratio. 
Field experiments were performed with applied soil water 
tensions of 0–0.2 m to study water quality effects on hydraulic 
properties of a sandy clay loam soil. The mean unsaturated 
hydraulic conductivity varied as quadratic or power equations 
with changes in water electrical conductivity and water SARw, 
and application of water with a higher electrical conductivity 
and increased sodium absorption ratio led to lower hydraulic 
conductivity volumes as the applied tension was increased. The 
findings indicated that in these types of soils the use of saline 
waters with an electrical conductivity < 10 dS·m−1 can improve 
soil hydraulic properties. 

With in-situ infiltration measurements via a mini disk 
infiltrometer, Schacht and Marschner (2015) studied the 
impact of treated wastewater versus fresh water on hydraulic 
conductivity of agricultural irrigation. The study reported that 
the mean hydraulic conductivity values decreased at all treated 
wastewater sites by 42.9–50.8%, compared with fresh water 
irrigation sites. Singh et al. (2017) also indicated that the water 
quality has an effect on the soil infiltration rate, which can be 
predicted based on cumulative time, the type of impurities in 
the water, the concentration of impurities in the water, and soil 
moisture content, by random forest regression.

Soil moisture content and soil bulk density have significant 
effects on soil unsaturated hydraulic conductivity. Bhatnagar 
et al. (1979) determined unsaturated hydraulic conductivity 
in the laboratory for some red and black soils, following water 
movement into a horizontal column of homogenous soil with 
uniform packing. A highly significant positive relationship was 
found between moisture content and hydraulic conductivity 
values in all soils studied. It was also concluded that the 
unsaturated hydraulic conductivity decreases rapidly with a 
decrease in moisture content; this decrease depends on the 
soil constituents and properties, and differences between 
soil types were clear. However, the effect of compaction on 
unsaturated hydraulic conductivity was not consistent. At the 
same water content value, unsaturated hydraulic conductivity 
was sometimes higher or lower in the compacted soil samples, 
compared with uncompacted soil (Andrade, 1971). In another 
study, the unsaturated hydraulic conductivity decreased with 
increasing bulk density (Dec et al., 2008).

Unsaturated flow should be estimated precisely, as 
its evaluation has important implications for transient 
infiltration processes due to the high nonlinearity of soil water 
characteristics. However, the methods available to obtain soil 
hydraulic parameters can be difficult and time-consuming to 
implement in practice (Angulo-Jaramillo et al., 2000). Thus, 
researchers have been developing analytical and numerical 
methods to calculate parameters that are difficult to measure 
in the field (Mollerup et al., 2008). Predictive data mining 

algorithms enable the estimation of unknown values based on 
patterns discovered from a database (MahaLakshmi, 2012). 
The main aim of the data mining process is to retrieve the 
data from a dataset and transform it into a more meaningful 
form with the help of algorithms (Jamil, 2016). Elbisy (2006) 
applied artificial neural network models (feed-forward back 
propagation, and radial basis function, RBF) to predict the 
field-saturated soil hydraulic conductivity of sandy soil based 
on basic saline and alkaline soil data. The results indicated that 
the back propagation neural network is more accurate than the 
RBF neural network. Moreover, the support vector machine 
methodology was successfully applied to develop pedo-transfer 
functions (PTFs) that used different input predictors to estimate 
soil hydraulic parameters (Twarakavi et al., 2009). Elbisy 
(2015) explored the use of data mining algorithms (support 
vector machine) to predict the field saturated soil hydraulic 
conductivity of sandy soil, based on basic soil properties of 
saline and alkaline soil datasets. Data inputs were hydraulic 
conductivity, clay/silt ratio, liquid limit, hydrocarbonate anions, 
chloride ions, and calcium carbonate content. The influence of 
three kernel functions (linear, radial basis, and sigmoid) on the 
performance of the support vector machine model (SVM) was 
investigated using field data. The radial basis model performed 
satisfactorily, with a modelling efficiency of 0.972 and a 
correlation coefficient of 0.976. The excellent performance of 
the support vector machine (SVM) with the radial basis model 
(RBF) demonstrated its potential as a useful tool for the indirect 
estimation, with maximum obtainable prediction accuracy, of 
soil hydraulic conductivity of sandy soil.

Sihag et al. (2017) predicted the unsaturated hydraulic 
conductivity of soil using adaptive neuro fuzzy inference 
system (ANFIS), multi-linear regression (LR), and artificial 
neural network (ANN). Laboratory experiments were 
carried out on 46 samples of sand, rice husk ash and f ly 
ash mixture. The results suggest improved performance 
by Gaussian membership function than triangular and 
generalized bell-shaped membership-based ANFIS. LR 
is better than ANN and Gaussian membership function-
based ANFIS for unsaturated hydraulic conductivity. Sihag 
(2018) developed fuzzy logic and ANN-based models for 
estimating the unsaturated hydraulic conductivity of soil. A 
mini disk infiltrometer is useful for determining infiltration 
characteristics. The mini disk infiltrometer (Decagon 
Devices, Inc.) at a suction rate (pressure head) varying from 
1 to 6 cm was used to determine the unsaturated hydraulic 
conductivity of soil of sandy soil. All the measurements 
were done on predetermined initial condition of different 
proportions of rice husk ash and f ly ash mixed with sand. 
For modelling, randomly selected (70%) data was applied for 
training and residual (30%) for the test. The prediction with 
ANN approach works well, with a correlation coefficient 
value of 0.8662 (RMSE, 4.5607 cm·h−1).  

The increasing availability of large quantities of 
management data in agricultural activities enables data-
driven approaches, which are gaining attention. There are 
various ways data-driven techniques can be applied, and 
each incorporates different assumptions about the nature of 
the underlying processes. Gaussian process regression (GPR) 
is a probabilistic and non-parametric model (Azman and 
Kocijan, 2007) and hence can model complex systems whilst 
handling uncertainty in a principled manner (Richardson 
et al., 2017). GPR has good nonlinear mapping ability. It 
can reflect the inherent nonlinearity, avoid the deficiency of 
traditional methods in nonlinearity, and can improve the 
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accuracy and reliability of predictive results, thus making it 
an effective method to improve predictive accuracy (Dingwen, 
2012). Gaussian process regression (GPR) has been successfully 
adopted for solving different problems. It was employed for 
predicting soil electrical resistivity based on soil thermal 
resistivity, percentage sum of the gravel and sand size fractions, 
and degree of saturation. The developed GPR was compared 
with an artificial neural network. The results showed that GPR 
is an efficient tool for predicting soil electrical resistivity (Samui, 
2014). Moreover, GPR has been used for predicting stream 
water temperature. The proposed approach was compared with 
traditional modelling schemes on measurements obtained from 
the Drava River, Croatia. The presented methodology can be 
used as a basis for predictive tools for water resource managers 
(Grbić et al., 2013). In addition, in the study of Holman et 
al. (2014), GPR was employed for estimating reference crop 
evapotranspiration from alternative meteorological data sources 
and results showed that GPR models provide much greater 
accuracy than baseline least-square regression models. Sihag et 
al. (2018) applied the artificial neural network (ANN) approach 
to estimate the infiltration rate of the soil. The performance of 
ANN was employed with other types of artificial intelligence 
approaches (GPR, gene expression programming (GEP)), and 
generalized neural network (GRNN)). The GPR, GRNN, and 
GEP models provided good estimation performance, but the 
ANN model performed better than these types of artificial 
intelligence approaches (correlation coefficient of up to 0.9816). 
Vand et al. (2018) applied diverse infiltration models using 
support vector machine, GPR, and multiple linear approaches 
to predict the infiltration rates of some Iranian fields. The study 
concluded that the Pearson VII kernel function performed well 
in comparison to radial basis kernel function, in both support 
vector machine as well as GPR, in predicting the infiltration rate 
of soil.  

Hence, in this study, field experiments using different water 
qualities were conducted to collect data that represent the 
unsaturated hydraulic conductivity of sandy loam soil. This 
field data was used for modelling the unsaturated hydraulic 
conductivity of the soil based on water and soil properties (i.e., 
electrical conductivity and the sodium-adsorption ratio of 
the irrigation water, soil moisture content, soil bulk density, 
and suction rate). In particular, this study aimed to analyse 
the performance of Gaussian process regression (GPR) in 

predicting unsaturated hydraulic conductivity. A multiple 
linear regression (LR) and a multi-layer perceptron (MLP) 
model were also used as baseline for comparison with the 
Gaussian process regression (GPR) model. 

MATERIALS AND METHODS 

Soil and water sample characteristics 

Experiments were conducted in a field located in Huraimla 
Governorate, Riyadh, Saudi Arabia (coordinates: 25.11° N, 
46.12°E, captured using a Garmin GPS 60 with positional 
accuracy < 15 m). Three soil samples were taken from the top 
20 cm of the soil. Soil samples were analysed in the laboratory 
of the Soil Department, College of Food and Agriculture 
Sciences, King Saud University, Riyadh, Saudi Arabia. The 
experimental field was classified as sandy loam soil, with 
sand content of 67%, silt content of 28% and clay content of 
5%, organic matter of 1.95%, soil electrical conductivity of 
2.65 dS·m−1, and soil pH of 8.9. The soil water content (%, dry 
basis (db)) during field experiments was measured using an 
electric oven for 24 h at 105°C. Soil bulk density was calculated 
based on dried soil mass and volume of the core sample. 

Eight water samples were analysed by the Inspection, 
Diagnosis, and Analysis Lab Company (IDAC), Medical 
Biology Analytical Laboratories, Riyadh, Saudi Arabia to get 
the characteristics of water samples, such as Ca, Mg, Na, HCO3, 
Cl, SO4, pH and water electric conductivity (ECw). Sodium-
adsorption ratio (SARw) in (meq·L−1)1/2 (Mohamed, 2017), 
a measure of the sodicity of water, is determined as follows 
(Suarez et al., 2008):
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(1)

where Na+, Ca++, and Mg++ represent concentrations of 
sodium, calcium, and magnesium, respectively, expressed in 
milliequivalents per litre (meq·L−1). 

Table 1 shows the chemical characteristics of water samples, 
electrical conductivity (ECw), sodium adsorption ratio (SARw), 
and pH of irrigation water used in the field experiments to study 
the interaction effect of irrigation water and sandy loam soil. 

TABLE 1
The characteristics of water samples used in the field experiments

Water samples Ca 
(meq·L−1)

Mg 
(meq·L−1)

Na 
(meq·L−1)

HCO3 
(meq·L−1)

Cl 
(meq·L−1)

SO4 
(meq·L−1)

ECw 
(dS·m−1) pH SARw 

((meq·L−1)1/2)

W1 6.61 6.48 6.30 2.40 11.97 5.10 4.72 6.83 2.46
W2 4.77 2.56 5.74 2.09 5.89 4.09 1.32 7.15 3.00
W3 11.62 7.09 10.20 8.00 17.95 8.50 1.77 7.33 3.33
W4 10.02 4.46 11.10 4.40 13.96 7.30 3.02 7.40 4.12
W5 10.42 3.42 11.33 3.69 9.49 8.14 1.56 7.70 4.31
W6 11.41 4.65 13.58 3.98 11.49 14.20 2.38 7.75 4.79
W7 14.34 11.28 20.56 5.33 15.47 22.00 3.89 8.00 5.74
W8 20.87 10.78 23.56 3.20 19.48 27.04 2.60 8.2 5.92
Mean 11.26 6.34 12.79 4.14 13.21 12.05 2.66 7.55 4.21
Minimum 4.77 2.56 5.74 2.09 5.89 4.09 1.32 6.83 2.46
Maximum 20.87 11.28 23.56 8.00 19.48 27.04 4.72 8.20 5.92
Coefficient of variation (%) 44 51 49 45 34 69 44 6 30
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Measurement of unsaturated soil hydraulic conductivity

The unsaturated hydraulic conductivity was measured using a 
mini disk infiltrometer (MDI, Decagon Devices Inc., Pullman, 
Washington, USA). It consists of two chambers (water reservoir 
and bubble chamber), connected via a Mariette tube to provide 
a constant water pressure head of −0.5 to −7 cm (equivalent to 
−0.05 to −0.7 kPa). The bottom of the MDI contains a porous 
sintered steel disk. The water-filled tube is placed on the soil 
surface, resulting in water infiltrating into the soil, with the 
volume of water and speed of infiltration dependent on the 
sorptivity and hydraulic conductivity of the soil. Pressure 
heads (suction rates) of −1, −2, −3, −4, −5, and −6 cm were 
chosen for this study. At all test sites, the infiltration tests 
were conducted without any modification of the soil surface 
nor addition of water; similar soil water content and soil bulk 
density were observed in all undisturbed spots, and no rainfall 
occurred during the test period. The mini disk infiltrometer 
(MDI) measurements (Fig. 1) were taken 7 times for each water 
quality, and the average value used.  

The respective measuring spots were typically several 
metres apart. During the measurement, the volume of the water 
in the reservoir chamber was documented at regular intervals. 
Infiltration was computed using Eq. 2, from the cumulative 
infiltration records versus time following Zhang (1997), 
Carsel and Parrish (1988), and Decagon Devices Inc. (2012) 
recommendations. 
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where I is the cumulative infiltration (cm), t is the time (s), and 
C1 (cm·s−1) and C2 (cm·(s−1)−0.5) are parameters. C1 is related to 
hydraulic conductivity and C2 is related to soil sorptivity. The 
hydraulic conductivity (Ki) of the soil is then computed from 
Eq. 3. 
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where C1 is the slope of the curve of the cumulative infiltration 
versus the square root of time and (A) is a value relating the 
Van Genuchten parameters for a given soil type to the suction 
rate and radius of the infiltrometer disk. The values of A can be 
calculated by Eq. 4 and Eq. 5 (Carsel and Parrish, 1988).
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where n and α are the Van Genuchten parameters for the soil, 
r0 is the disk radius and ho is the suction at the disk surface. 
The Van Genuchten parameters for the 12 texture classes 
were obtained from Carsel and Parrish (1988). Sporadically 
occurring negative values for hydraulic conductivity indicate 
unsteadiness of the particular measurement and were ignored 
in the further calculation (Schacht and Marschner, 2015).

Datasets 

The collected dataset contains a total of 48 field measurement 
instances having 4 attributes. The data were randomized, and 
the Waikato environment for knowledge analysis (WEKA) 
tool was used to obtain a percentage of the data for building 
the model (85%, 41 points), and the rest (15%, 7 points) were 
used for testing. The input variables in this study are SARw, 
ECw, soil moisture content,   soil bulk density, and suction rate. 
Descriptive statistics for input and output variables are shown 
in Table 2 for the entire dataset. 

Predictive data mining techniques examined in this 
research

The predictive data mining techniques examined in this research 
were Gaussian process regression, linear regression, and the 
multi-layer perceptron neural networks, and simulations were 
done using the WEKA open-source tool (Garner, 1995). The 
WEKA machine learning workbench provides an environment 
for automatic classification, regression, clustering, and common 
data mining problems in bioinformatics research. It has a user-
friendly graphical interface to compare the various algorithm 
results (Frank et al., 2004). In the training phase, a model is 
constructed from the training instances selected by WEKA and 
in the testing phase, the model is used to assign a label to an 
unlabelled test instance. 

TABLE 2 
Statistics for the field data inputs and outputs used for training dataset

Statistics ECw (dS·m−1) SARw
(meq·L−1)1/2

Soil moisture 
content 

(MC, % db)

Soil bulk density 
(BD, g·cm−3)

Suction rate 
(SR, cm)

Unsaturated soil hydraulic 
conductivity 

(output, KU, cm·s−1)

Mean 2.66 4.21 11.25 1.58 3.5 6.87 × 10−04

Minimum 1.32 2.46 8.34 1.42 1 1.15 × 10−08

Maximum 4.72 5.92 14.16 1.67 6 2.34 × 10−03

Standard deviation 1.12 1.25 1.18 0.06 1.7 6.06 × 10−04

Figure 1 
Mini disk infiltrometer used for field infiltration measurements
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Linear regression (LR) model 

Linear regression analyses the relationship between several 
input variables, and a straight line is fitted to the input 
variables in the best manner possible. With a good fit, a linear 
regression model can be used to predict future values of the 
output variable. WEKA performs standard least-squares 
linear regression and implements ridge regression (Witten and 
Frank, 2005). Ridge regression is used to solve problems that 
are not well-posted, meaning that problems will have weak 
stability of algorithms to be solved (Wormstrand, 2011). In 
WEKA, a fixed small ridge parameter of 1.00 × 10−08 was used, 
and no attribute selection criterion was designated to perform 
linear regression. 

Multi-layer perceptron (MLP) model

The MLP is an optimum feed-forward artificial neural 
network (ANN), trained with the back-propagation algorithm, 
that consists of neurons with substantially weighted 
interconnections where signals always travel in the direction 
of the output layer. These neurons are mapped as sets of input 
data onto a set of proper outputs with hidden layers (Turkan 
et al., 2016). The input signals are sent by the input layer to 
the hidden layer without executing any operations. Then, 
the hidden and output layers multiply the input signals by a 
set of weights, and either linearly or non-linearly transform 
the results into output values. The connection between 
units in following layers has an associated weight (Turkan 
et al., 2016), and these weights are optimized to compute 
reasonable prediction accuracy (Elish, 2014; Lek and Park, 
2008). A typical MLP with one hidden layer can be described 
mathematically as follows (Turkan et al., 2016): 
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Equation 6 defines summing products of the inputs (Xi) 
and weight vectors (aij) and a bias term of hidden layer (a0j). 
Also, in Eq. 7, the outputs of hidden layer (Z j) are obtained by 
transforming this sum, defined in Eq. 6, by using the activation 
function g. 
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The most widely used activation function is the sigmoid 
function (Karlik and Olgac, 2011), defined in Eq. 8 for the input x. 
The hidden and output layers are based on this sigmoid function.
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Eq. 9 defines summing the products of the hidden layer’s 
outputs (Zj) and weight vectors (bjk) and the bias term of the 
output layer (bk0). 
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In Eq. 10, the outputs of the output layer (Yk) are obtained 
by transforming the sum calculated in Eq. 9, and using the 
sigmoid function g, defined in Eq. 8.
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Figure 2 shows the MLP created in the WEKA tool and 
applied as an artificial neural network (ANN) based on the 
multilayer perceptron (MLP) algorithm in this study. The same 
dataset was used as in the linear regression (LR) run. A neural 
net with 3 nodes in the hidden layer was created by WEKA, 
as shown in Fig. 2. The neural net was trained for 500 epochs; 
with a learning rate of 0.3 and a momentum of 0.2 (the WEKA 
defaults). The number of epochs gives how long the neural net 
will run, while the learning rate and momentum indicate how 
the weights are adjusted (Wormstrand, 2011). The error per 
epoch was 8.2743 × 10−03 cm·s−1 

Gaussian process

A Gaussian process is a collection of random variables, where 
any Gaussian process finite number has a joint Gaussian 
distribution (Rasmussen, 2003). A Gaussian process is 
completely specified by its mean function, and covariance 
and variance functions (Rasmussen and Williams, 2006). The 
details of GPR were obtained from Rasmussen (2003). Based on 
Samui and Jagan (2013) and Saini and Chandramouli (2013), 
the following noise dataset can be considered by Eq. 11.  
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	 (11)

where x is input, y is output and N is the number of data points. 
In this study, ECw, SARw, SR, MC and BD are used as input 
variables for the GPR. The output of GPR is χ. So, x value can be 
calculated by Eq. 12. 
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It is assumed that the above data are generated from Eq. 13: 
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where ε is the Gaussian noise term, ξ is Gaussian distribution 
(zero mean, variance σ2). 

The joint distribution of Y is given by Eq. 14:
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where K(x, x) is the kernel function and I is the identity matrix.

Figure 2 
The MLP created in the WEKA tool for prediction of unsaturated soil 

hydraulic conductivity of sandy loam soil
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For a test input x*, GPR defines a Gaussian predictive 
distribution over the output y* with mean determined by Eq. 15 
and variance by Eq. 16. 
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where T is the transpose. 
To develop the GPR model, a suitable covariance 

function is required. In this study, the 4 kernel functions 
available in WEKA are used: the normalized polynomial 
kernel, the polynomial kernel, the RBF kernel, and the 
Pearson VII kernel. 

Criteria for evaluating the accuracy of the selected 
predictive models

Experimentally, this study evaluated and compared the 
prediction accuracy of the selected predictive models based on 
three performance measurements frequently used in previous 
studies: correlation coefficient (r), root mean square error 
(RMSE), and mean absolute error (MAE). These performance 
measurements are formulated as shown in Table 3, with 
optimal values. Yi is the observed unsaturated soil hydraulic 
conductivity, the predicted unsaturated soil hydraulic 
conductivity is Ŷi, Yu is the mean of the observed unsaturated 
soil hydraulic conductivity, Yo is the mean of the predicted 
unsaturated soil hydraulic conductivity, and Nt is the number 
of data points in the testing dataset. 

RESULTS 

Water data analysis

The data were visualized using the WEKA tool. Table 1 
shows high variations (CV) in water quality parameters 
for Ca, Mg, Na, HCO3, Cl, and SO4, of 44, 51, 49, 45, 34, 
and 69%, respectively. The investigated water bicarbonate 
(HCO3) content ranged from 2.09 to 8.00 meq·L−1, chloride 
content (Cl) ranged from 5.89 to 19.48 meq·L−1, and sulfate 
contents (SO4) ranged from 4.09 to 27.04 meq·L−1. The pH 
of the investigated water ranged from 6.83 to 8.20, with a 
mean value of 7.55 (Table 1). As shown in Table 2, SARw 
values in this study ranged from 2.46–5.92 (meq·L−1)1/2, with 
a mean of 4.21 (meq·L−1)1/2,  water electrical conductivity 

ranged from 1.32–4.72 dS·m−1, with a mean of 2.66 dS·m−1, 
soil moisture content (MC) values ranged from 8.34–14.16% 
db, with a mean of 11.25% db, soil bulk density (BD) values 
ranged from 1.42–1.67 g·cm−3, with a mean of 1.58 g·cm−3, 
and observed unsaturated soil hydraulic conductivity values 
ranged from 1.15 × 10−08 to 2.34 × 10−03 cm·s−1, with a mean of 
6.87 × 10−04 cm·s−1 (Table 2). 

The WEKA linear regression model result for unsaturated 
soil hydraulic conductivity is calculated by Eq. 17.
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where KU is unsaturated hydraulic conductivity of a sandy 
loam soil (cm·s−1), ECw is electrical conductivity of irrigation 
water (dS·m−1), SARw ((meq·L−1)1/2) is sodium adsorption ratio of 
irrigation water calculated based on the concentrations of Na, 
Ca, and Mg expressed in milli-equivalents per litre (meq·L−1), 
MC is soil moisture content (% db), BD is soil bulk density 
(g·cm−3) and SR is suction rate (pressure head, cm). 

It can be seen from Eq. 17 that unsaturated hydraulic 
conductivity increases with increasing ECw and decreases 
with increasing SARw; these findings are in agreement with 
those obtained by  Moosavi and Sepaskhah (2012c) , who 
indicated that use of saline waters with an ECw of < 10 dS·m−1 
can improve soil hydraulic properties in sandy clay loam soils 
and that irrigation waters with SARw < 20 (meq·L−1)1/2 may 
not adversely affect hydraulic attributes when the water is first 
applied; although higher SARw may negatively affect them. 
Andrade (1971) reported a very large decrease in soil hydraulic 
conductivity as water content decreased, and that the effect 
of compaction on unsaturated hydraulic conductivity (KU) 
was not consistent and at the same value of water content; 
unsaturated hydraulic conductivity was sometimes higher 
in the compacted samples. However, the positive correlation 
between KU and BD in this study can be attributed to the KU 
measurements, taken on undistributed soil with different soil 
moisture content. Also, in this study, the unsaturated soil 
hydraulic conductivity decreased with increased suction rate 
(SR), and this finding was in agreement with those obtained 
by Moosavi and Sepaskhah (2012c), Simunek et al. (1999) and 
Matula et al. (2015).  

DISCUSSION

According to the water quality analysis, HCO3 may not cause 
irrigation problems, as its concentration was within the range 
of recommended guidelines for irrigation water quality, of 
0–10 meq·L−1 (Ayers and Westcot, 1994; Shahinasi and Kashuta, 
2008). Also, chloride content was within tolerance for irrigation 
water, under the recommended limit of 30 meq·L−1. Although the 
sulfate concentrations in the study area vary considerably, only 
6 water samples fell within the acceptable limits of 0–20 meq·L−1 
for irrigation water. W7 and W8 exceed sulfate concentration 
limits, with values of 22 meq·L−1 and 27.04 meq·L−1, respectively, 
(Table 1). The pH values were within the permissible limit for 
irrigated agriculture water, 6.5–8.4 (Ayers and Westcot, 1994). 
Hence, the investigated water presented no restrictions for 
irrigation use.

The two most common water quality factors which 
influence the movement of water into soil (infiltration) are 
salinity and the sodium content relative to the Ca and Mg 
content. High salinity water will increase infiltration. Low 

TABLE 3
Criteria for evaluating the accuracy of the selected 

predictive models

Statistic Formula Optimal 
value

Correlation 
coefficient (r) 1

Root mean 
square error 
(RMSE)

0

Mean absolute 
error (MAE) 0
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salinity water, or water with high Na to Ca and Mg ratio, will 
decrease infiltration. Both factors can operate concurrently. 
The infiltration rate generally increases with increasing 
salinity and decreases with either decreasing salinity or 
increasing Na content relative to Ca and Mg. Therefore, the 
two factors, salinity and SAR, provide information on the 
ultimate effect of the water quality on the water infiltration 
rate (Nata et al., 2009).  On almost all soils, the range of water 
SAR that can be used for irrigation, with a low risk of the 
emergence of harmful levels of exchangeable Na, is 0–10 (Ayers 
and Westcot, 1994). 

To study the impact of SARw on unsaturated soil 
hydraulic conductivity of a sandy loam soil, a pressure head 
of −4 cm was employed as a mean value. Figure 3 shows the 
relationship between SARw and unsaturated soil hydraulic 
conductivity of sandy loam soil at a suction rate of −4 cm. It is 
clear that unsaturated soil hydraulic conductivity decreased 
linearly, with high correlation (R2 = 0.8999) with an increase 
of SARw, and this finding agrees with data presented by Xiao 
et al. (1992). Figure 4 illustrates the relationship between 
suction rate and unsaturated soil hydraulic conductivity of 
sandy loam soil at SARw of 2.46 (meq·L−1)1/2 (ECw was 4.72 
dS∙m−1, average MC and BD were 12.12% db and 1.63 g·cm−3, 
respectively). A polynomial relationship was found, with R2 of 
0.9698; the unsaturated soil hydraulic conductivity decreased 
with increase of suction rate (Fig. 4) and this finding agrees 
with data presented by Moosavi and Sepaskhah (2012c), 
Simunek et al. (1999) and Matula et al. (2015). 

Prediction model performance

The objective of a learning algorithm is to develop a model 
with good generalization, so there can be a suitable practical 
model (Munir and Winarko, 2015). Table 4 shows the WEKA 
information and kernel used in the GPR model. Also, Fig. 5 
shows the time spent building each of the selected predictive 
models. The GPR-Pearson VII kernel function model with a 
cache size of 250007, Omega of 1.0, and Sigma of 1.0 took the 
least time to build compared with other kernels. 

The measured performance of the prediction models in 
terms of r, RMSE, and MAE, for all testing data, is presented 
in Table 5, which shows that all the listed models had good 
prediction performance. The RMSE statistics indicate only the 
model’s ability to predict away from the mean. The MAE is the 
most natural and unambiguous measure of the average error 

Figure 3 
The relationship between water sodium adsorption ratio and 

unsaturated soil hydraulic conductivity of sandy loam soil at a suction 
rate of −4 cm

Figure 4 
The relationship between suction rate and unsaturated soil hydraulic 

conductivity of sandy loam soil at sodium adsorption ratio (SARw) of 2.46 
(meq·L−1)1/2 (ECw was 4.72 dS·m−1 and average MC and BD were 12.12% db 

and 1.63 g·cm−3, respectively).

TABLE 4 
WEKA information and kernel used in the GPR model

Kernel type WEKA information Kernel used

The normalized 
polynomial kernel

Scheme:weka.classifiers.functions.Gaussianprocesses -L 
1.0 -N 0 -K “weka.classifiers.functions.supportVector.
NormalizedPolyKernel -C 250007 -E 2.0”

Normalized poly kernel: K(x,y) = 
<x,y>^2.0/(<x,x>^2.0*<y,y>^2.0)^(1/2)

Poly kernel
Scheme:weka.classifiers.functions.Gaussianprocesses -L 
1.0 -N 0 -K “weka.classifiers.functions.supportVector.
PolyKernel -C 250007 -E 1.0”

Linear kernel: K(x,y) = <x,y>

Puk (Pearson VII 
kernel function)

Scheme:weka.classifiers.functions.Gaussianprocesses -L 1.0 
-N 0 -K “weka.classifiers.functions.supportVector.Puk -C 
250007 -O 1.0 -S 1.0”

RBF kernel
cheme:weka.classifiers.functions.Gaussianprocesses -L 
1.0 -N 0 -K “weka.classifiers.functions.supportVector.
RBFKernel -C 250007 -G 0.01”

RBF kernel: K(x,y) = e^-(0.01* 
<x-y,x-y>^2)
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magnitude. It appears that all the dimensioned evaluations 
and inter-comparisons of average model performance error 
should be based on the MAE (Elbisy, 2015). Considering both 
the MAE and RMSE criteria in the testing phase, the GPR 
model that was based on the GPR-Pearson VII kernel function 
obtained the highest prediction accuracy for unsaturated 
hydraulic conductivity of sandy loam soil. Furthermore, 
this function model achieved the best prediction accuracy 
based on all three performance measures. Depending on 
what settings were applied to the developed MLP, the results 
varied. The developed MLP is not optimally tuned, meaning 
that further runs with the MLP settings could improve the 
performance by finding better-suited local minima. Table 5 
also shows the correlation coefficients related to the kernel 
function of the GPR model. It is clear that the Pearson VII 
kernel function (PUK) yielded higher correlation coefficient 
(0.9646) than other kernels. 

Figure 6 illustrates the relationship between the predicted 
and actual unsaturated soil hydraulic conductivity for all 
predictive models for 7 testing data points. The figure shows 
fair relationships between predicted and actual values. 
Apparently, the GPR-Pearson VII kernel function gives the 
best representation of actual experimental data, with the 
highest R2 at 0.9646 (Table 5). This approach provides great 
prediction capacity and does not require knowledge of the 
input parameters, but its prediction capability is limited by the 
information content of the data. 

CONCLUSIONS 

This research was mainly conducted to evaluate the 
potential for using data mining techniques for predicting 
the unsaturated hydraulic conductivity of a sandy loam 
soil based on water and soil properties. In particular, 
data mining algorithms of Gaussian processes, artificial 
neural network based on multilayer perceptron (MLP), and 
linear regression were generated and individually tested. 
The analytical results suggest that all of the tested models 
can provide good prediction accuracy, with correlation 
coefficients (r) ranging from 0.9162 to 0.9646. The Gaussian 
processes regression model with Pearson VII kernel function 
showed the best prediction accuracy as an individual data 
mining model. With the demonstrated potential of using 
data mining models to predict the unsaturated hydraulic 
conductivity of a sandy loam soil, future research can 
adopt this approach to study other variables in the field of 
managing water and solute transport in soils that cannot be 
more easily measured.   
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Figure 5 
The time spent building the selected predictive models

TABLE 5 
The errors of different algorithms of the testing dataset

Algorithms Correlation 
coefficient (r) 

Mean absolute error 
(MAE) (cm·s−1)

Root mean squared 
error (RMSE) (cm·s−1)

GPR- normalized polynomial kernel 0.9206 1.59 × 10−04 1.88 × 10−04

GPR- polynomial kernel 0.9162 1.23 × 10−04 1.87 × 10−04

GPR- Pearson VII kernel function 0.9646 8.94 × 10−05 1.16 × 10−04

GPR-RBF kernel 0.9349 2.65 × 10−04 3.27 × 10−04

MLP 0.9452 1.05 × 10−04 1.87 × 10−04

Linear regression (LR) 0.9301 1.73 × 10−04 2.22 × 10−04

Figure 6 
The relationship between the predicted and actual unsaturated soil 
hydraulic conductivity, 3 predictive models for 7 testing data points 
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