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ABSTRACT
Detailed information derived from a soil moisture characteristics curve (SMC) helps in water flow and solute transport 
management. Hence, prediction of the SMC from soil particle size distribution (PSD), which is easy to measure, would be 
convenient. In this study, we combine an integrated robust PSD-based model and a Van Genuchten SMC model to predict a 
continuous form of SMC using sand, silt and clay percentages for 50 soils selected from the UNSODA database. We compare 
the performance of the proposed approach with some previous prediction models. The results indicated that the SMC can be 
predicted and modelled properly by using sand, silt, clay and bulk density data. The model’s bias was attributed to the high fine 
particle and organic carbon (OC) content. We concluded that independence of the proposed method from the database and any 
empirical coefficients make predictions more reliable and applicable for large-scale water and solute transport management.
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INTRODUCTION

The soil’s unsaturated zone forms a pivotal part of the 
hydrological cycle as it connects surface water to groundwater 
through the porous medium of soil. Therefore, a comprehensive 
evaluation of unsaturated soil proves useful for studying water 
flow and solute transport (Harter and Hopmans 2004). One of 
the most important challenges in soil physics is to deal with 
the estimation of the hydraulic conductivity curve (HCC) and 
soil moisture characteristic curve (SMC) (Futter et al., 2007; 
Balland et al., 2008). The SMC, which indicates the functional 
relationship between soil water content and matric potential, is 
used to model the solute transport and water flow in the vadose 
zone (Hunt et al., 2013). However, due to temporal and spatial 
variability, a direct measurement of the hydraulic properties 
is labour-intensive, costly and inaccurate (Schaap and Leij 
1998; Christiaens and Feyen 2001; Islam et al., 2006; Abbasi 
et al., 2011). Therefore, considerable efforts have been made to 
estimate the SMC indirectly (Antinoro et al., 2014). 

Easily available soil properties have been used extensively as 
a basis for alternative methods to estimate the HCC and SMC. 
In recent years, researchers have paid considerable attention to 
predicting SMC in terms of pore size distribution (PoSD) using 
basic soil physical properties (Nimmo et al., 2007; Mohammadi 
and Meskini-Vishkaee, 2013). These approaches, which are 
dubbed transfer functions, can be classified into three groups:
•	 Statistical techniques (pedo-transfer functions) or neural 

network models determine the correlation of basic soil 
properties (for instance sand, silt and clay percentages 
and organic matter content) to SMC points or parameters 
(Dashtaki et al., 2010; Vereecken et al., 2010; Abbasi et al., 
2011). Available and reliable soil databases provide a variety 
of inputs for statistical models and, therefore, these models 
have been widely used (Hwang and Choi, 2006). For instance, 

ROSETTA software uses neural network analysis to estimate 
soil hydraulic parameters with hierarchical pedo-transfer 
functions. However, some researchers have shown that 
ROSETTA software did not estimate the Van Genuchten 
model (VG model) parameters properly (Yang and You, 2013). 

•	 Physico-empirical models express the relation of particle size 
distribution (PSD) with PoSD. Arya and Paris (1981) made 
the first attempt to develop a physico-empirical model, which 
connects the soil moisture content and void volume. They 
estimated the pore diameter from the particle size (AP model). 
Following Arya and Paris (1981), other researchers developed 
semi-physical models to overcome the shortcomings of pedo-
transfer functions (PTFs) (Haverkamp and Parlange, 1986; 
Smettem and Gregory, 1996; Hwang and Powers, 2003), For 
instance, Haverkamp and Parlange (1986) developed an 
approach based on the Brooks and Corey (1964) model (BC 
model) which predicts the continuous form of SMC using PSD, 
soil organic matter and bulk density for sandy soils. 

•	 Conceptual models predict the soil hydraulic properties 
based on some conceptual assumptions without using any 
empirical coefficient. Recently, Mohammadi and Vanclooster 
(2011) developed a robust and conceptual transfer function 
to estimate SMC from PSD (MV model). Mohammadi and 
Meskini-Vishkaee (2013) augmented the MV model to predict 
a continuous form of the SMC (MM model). They showed 
that the MV model and the MM model under-predicted 
the moisture content of soils in dry ranges of the SMC. To 
overcome this constraint, Meskini-Vishaee et al. (2014) used a 
scaling approach to predict the continuous form of SMC based 
on their knowledge of PSD, the Van Genuchten (1980) model 
and particle packing state (MV-VG model). Meskini-Vishaee 
et al. (2014) showed that the scaling approach improves the 
SMC predictions by 30% for all selected soils in comparison 
to the MV model, the MM model and ROSETTA (Schaap et 
al., 2001) software.  The MV-VG model is based on a full-range 
experimental PSD while, the full range of the PSD curve is not 
measured routinely and the sand, silt and clay percentages are 
commonly reported in many laboratory analyses. 
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Therefore, the objectives of this study were (i) to adjust the 
MV-VG model for the prediction of SMC using only sand, silt 
and clay percentage; (ii) to compare the performance of the 
proposed approach with the results from the MV-VG model 
using the UNSODA (Unsaturated Soil Database) database and 
(iii) to evaluate the performance of the adjusted MV-VG model 
with the ROSETTA software prediction results.

Theory 

Scaling approach

Empirical parameters of the soil water characteristic curve 
and database-dependent models are error sources of models 
which describe soil hydraulic functions. Elimination of such 
systematic error using scaling approaches greatly improves 
the SMC accuracy. Meskini-Vishkaee et al. (2014) proposed an 
SMC scaled model based on the VG model assuming that the 
residual water content equals zero (θr = 0). 
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where θ (L3·L-3) is the soil moisture content, θs (L3·L-3) is the 
saturated soil moisture content, h (L) is the matric suction, m 
and α are fitting coefficients and the parameter n* is the scaled 
pore size distribution index.
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where n is a fitting coefficient and λ is defined as:
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The parameter ξmax(–) equals 1.41432 and ξ (–) is a 
coefficient depending on the arrangement state of soil particles 
and is defined as:
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where e(–) is the void ratio given by: 
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where ρb (M·L–3) and ρs (M·L–3) are bulk and particle densities, 
respectively.

Developed soil water characteristic curve

Mohammadi and Vanclooster (2011) presented a conceptual 
robust model (MV model) to predict the soil matric suction, hi, 
from the particle size assuming the pore space geometry:
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where hi (L) is the matric suction of the ith fraction size, ri (L) 
is the radius of the ith fraction size. Simplified assumptions of 
the MV model, which ignore the considerable effects of clay 
surface forces, lead to under-predictions in a dry range of the 

SMC, despite the fact that the MV model predicts the water 
characteristic curve accurately because of independence of 
SMC to the database and no empirical parameters. Following 
the Arya and Paris model (AP model), the mathematical 
equation between the moisture content (θi) and hi is defined as: 
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where wi(-) is the particle mass fraction of the ith fraction. Eq. 
(1) is the scaled form of the Van Genucthen SMC model when 
θr = 0. 
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Combining Eqs 6 to 8 gives:

			 

Ɵ = Ɵ𝑠𝑠
(1 + (𝛼𝛼ℎ)𝑛𝑛∗)𝑚𝑚 

 

    𝑛𝑛∗ = 𝜆𝜆 · 𝑛𝑛                      (2) 

 

𝜆𝜆 = 𝜉𝜉
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

 

 

       𝜉𝜉 = 1.9099
𝑒𝑒+1  

 

        𝑒𝑒 = 𝜌𝜌𝑠𝑠−𝜌𝜌𝑏𝑏
𝜌𝜌𝑏𝑏

 

 

ℎ𝑖𝑖 = 0.543 × 10−4 ξ 
𝑟𝑟𝑖𝑖

 

 

Ɵ𝑖𝑖 = Ɵ𝑠𝑠 ∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
 

 

Ɵ𝑖𝑖 = Ɵ𝑠𝑠
(1 + (𝛼𝛼ℎ𝑖𝑖)𝑛𝑛∗)𝑚𝑚 

 

 

∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
= 1

(1 + (𝛼𝛼 0.543 . ξ 
𝑟𝑟𝑖𝑖

)
𝑛𝑛∗

)
𝑚𝑚 

 

∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
= 1

(1 + (𝛼𝛼 0.543 . ξ 
𝑟𝑟𝑖𝑖

)
𝑛𝑛∗

)
(1−1

𝑛𝑛)
 

 

	

(9)

Eq. 9 is fitted to the PSD data to estimate the VG model 
parameters (m, n and α), which should be used as the input 
parameters in Eq. 1 as an SMC predictor model. Since Eq. 9 
includes 3 variable fitting parameters it should be used to fit the 
full range of PSD data containing at least 4 measured points. 
For limited-availability data points, Eq. 9 can be represented 
with the assumption of m = 1–1/n.
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    𝑛𝑛∗ = 𝜆𝜆 · 𝑛𝑛                      (2) 

 

𝜆𝜆 = 𝜉𝜉
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

 

 

       𝜉𝜉 = 1.9099
𝑒𝑒+1  

 

        𝑒𝑒 = 𝜌𝜌𝑠𝑠−𝜌𝜌𝑏𝑏
𝜌𝜌𝑏𝑏

 

 

ℎ𝑖𝑖 = 0.543 × 10−4 ξ 
𝑟𝑟𝑖𝑖

 

 

Ɵ𝑖𝑖 = Ɵ𝑠𝑠 ∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
 

 

Ɵ𝑖𝑖 = Ɵ𝑠𝑠
(1 + (𝛼𝛼ℎ𝑖𝑖)𝑛𝑛∗)𝑚𝑚 

 

 

∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
= 1

(1 + (𝛼𝛼 0.543 . ξ 
𝑟𝑟𝑖𝑖

)
𝑛𝑛∗

)
𝑚𝑚 

 

∑ 𝑤𝑤𝑤𝑤
𝑖𝑖

1
= 1

(1 + (𝛼𝛼 0.543 . ξ 
𝑟𝑟𝑖𝑖

)
𝑛𝑛∗

)
(1−1

𝑛𝑛)
 

 
	

(10)

Eq. 10 can be used to fit PSD data including the sand, silt 
and clay percentages only. In summary, fitting of Eq. 10 or Eq. 9 
allows the estimation of SMC parameters (n, m, α). Considering 
that ρb is known and the scaling factor and subsequently n* can be 
calculated, the continuous form of SMC is predicted using Eq. 1.

MATERIALS AND METHODS

Fifty soil samples from the UNSODA database (Nemes et al., 
2001) having PSD data with at least 4 fractions were selected 
to estimate SMC. The selected codes are presented in Table 
1. The UNSODA database contains unsaturated hydraulic 
characteristics of 790 soil samples from all over the world, 
and especially Europe and America. They are used to develop 
estimations of water flow and solute transport management.

Equation 9 was used to fit the full range of PSD data with 
at least 4 measured points (Method 1: full PSD method) and 
Eq. 10 was used to fit the PSD data by assuming that only the 
sand, silt and clay percentages are known (Method 2: limited 
PSD method). To evaluate the unknown coefficients of Eq. 9 
and Eq. 10, the trust region algorithm of Matlab8.3 software 
(Matlab 8.3, The Mathworks Inc., Natick, MA, USA) was used. 
The parameters e, ξ and λ were easily calculated using available 
bulk and particle densities. In most UNSODA soil samples, θs 
data are available. For those samples with no θs data we used 
the suggestion of Chan and Govindaraju (2004), who assumed 
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saturation moisture content to be equal to the corresponding 
moisture content of the lowest matric potential. 

The ROSETTA software is also used to estimate the SMC 
parameters of the VG model using the SSCBD model option 
(sand, silt and clay percentages and bulk density are model 
predictors). 

Statistical analysis

To calculate the accuracy of each prediction, the root mean 
square error (RMSE) between the measured and predicted 
moisture content was computed:

		
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1

𝑁𝑁 ∑ (Ɵ𝑖𝑖(𝑝𝑝) − Ɵ𝑖𝑖(𝑚𝑚))2𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓
 

 

              𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑀𝑀𝑖𝑖−𝑃𝑃𝑖𝑖|
𝑁𝑁

𝑛𝑛
𝑖𝑖=1  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑀𝑀𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑁𝑁

𝑛𝑛

𝑖𝑖=1
 

	  
(11)

where N is the number of measured moisture contents, θi(p) 
and θi(m) are predicted and measured moisture content in the ith 
matric suction, respectively. The coefficient of determination 
(R2) is also presented to evaluate the correlation between 
the measured and predicted moisture content. Relative 
improvement (RI) was calculated to compare the prediction 
methods (McBratney, 2002):

			 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑ (Ɵ𝑖𝑖(𝑝𝑝) − Ɵ𝑖𝑖(𝑚𝑚))2𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓
 

 

              𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑀𝑀𝑖𝑖−𝑃𝑃𝑖𝑖|
𝑁𝑁

𝑛𝑛
𝑖𝑖=1  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑀𝑀𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑁𝑁

𝑛𝑛

𝑖𝑖=1
 

	
(12)

where RMSEf and RMSEs are RMSE of Method 1 (as the 
reference model) and Method 2 or ROSETTA (as the 
comparative approaches), respectively. A positive value of 
dimensionless RI indicates that the accuracy of the predicted 
moisture contents improves by using Method 2 or the 
ROSETTA approach.

To compare the measured and predicted moisture content 
for the dataset containing 50 soils, UNSODA codes were 
evaluated using the mean absolute error (MAE) and mean bias 
error (MBE) defined as: 

	

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑ (Ɵ𝑖𝑖(𝑝𝑝) − Ɵ𝑖𝑖(𝑚𝑚))2𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓
 

 

              𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑀𝑀𝑖𝑖−𝑃𝑃𝑖𝑖|
𝑁𝑁

𝑛𝑛
𝑖𝑖=1  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑀𝑀𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑁𝑁

𝑛𝑛

𝑖𝑖=1
 

	 (13)

and 

		

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √1
𝑁𝑁 ∑ (Ɵ𝑖𝑖(𝑝𝑝) − Ɵ𝑖𝑖(𝑚𝑚))2𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓
 

 

              𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑀𝑀𝑖𝑖−𝑃𝑃𝑖𝑖|
𝑁𝑁

𝑛𝑛
𝑖𝑖=1  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑀𝑀𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑁𝑁

𝑛𝑛

𝑖𝑖=1
 

 	
(14)

where Mi, Pi are the measured and predicted values of moisture 
content, respectively, and N is also the number of measured 

and predicted points. MAE is a statistical criterion to show 
the average of error magnitude and MBE is used to show the 
average bias of each method. A positive MBE value indicates 
over-prediction.

RESULTS AND DISCUSSION	

Figure 1 (a–h) displays the actual measured and estimated 
SMC for clay (Code 4120), loam (Code 1190), sand (Code 
4132), sandy clay loam (Code 1122), sandy loam (Code 2111), 
silty loam (Code 3211), silty clay (Code 3030) and silty clay 
loam (Code 3110) soils. The SMC is estimated using Prediction 
Method 1, Method 2 and the ROSETTA software. Method 
1, Method 2 and the ROSETTA software estimated SMC 
adequately for Soil Codes 1190, 4132 and 2111. However, for 
the dry ranges of the SMC, these methods under-predicted 
the soil moisture content. Moreover, the ROSETTA software 
slightly over-predicted the moisture content of soil in wet 
ranges of the SMC (low matric suction) for Soil Code 2111. 
For Codes 3030, 4120 and 3110, Method 1 and Method 2 
predict SMC properly, while the ROSETTA software does 
not provide appropriate estimations for all ranges of SMC 
(for Soil Code 3030 and 3110) or for the main part of SMC 
(for Soil Code 4120). For silty loam (Code 3211), Methods 1 
and 2 significantly over-estimated the soil water content in 
the low matric suction range, while the ROSETTA software 
underestimated for all ranges.

Methods 1 and 2 are based on the MV model. This model 
assumes that all soil particles are spherical and that soil 
structure can only influence soil bulk density. The effects of soil 
organic matter content, particle surface energy, lens and film 
water volume are not supported by this model (Mohammadi 
and Vanclooster, 2011; Mohammadi and Meskini-Vishkaee, 
2013). Therefore, the under-prediction by Method 1 and 
Method 2 can be partially attributed to the assumptions of the 
MV model. For all sample soils represented in Fig. 1, Method 1 
and Method 2 provide consistent predictions, especially for the 
wet ranges of SMC.

The results of fitting Eq. 9 (Method 1: full PSD method) and 
Eq. 10 (Method 2: limited PSD method) are presented in Table 2.

Table 2 shows that the average value of θs is 0.445 for all 
selected soils and varies from 0.324 for sandy loam soils to 
0.557 for silty clay loam soils. For Methods 1 and 2, the average 
values of n* were 1.374 and 1.229, respectively. Regarding Eqs 3 
to 5, the λ value is computed using bulk and particle densities; 
the average λ values of Method 1 and Method 2 are the same 
(0.756). For Method 1 and Method 2, the geometric average 
values of α are 0.0101 and 0.0129, respectively. The prediction 
results of Method 1, Method 2 and the ROSETTA software are 

Table 1
Textural classes and UNSODA codes of soil data used to evaluate and compare models

Soil texture Silt loam Loamy sand Sand Sandy 
loam

Sandy clay 
loam Loam Silty clay Silty clay 

loam Clay

UNSODA
Codes

4180 3211 1011 1051 2203 1101 1103 1190 1320 1362 1400
4181 4082 1013 4520 1130 1114 1212 1360 3102 4120
4183 3131 4132 1210 3202 2530 3030 3110 4681
4531 4062 2111 1092 3222 3212
1340 2101 3292 1104 4770 3251
2160 2105 4172 1122 3190
2493 1031 1131

N of soil 
samples 9 8 3 7 6 6 3 5 3
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Figure 1 (a–h) 
Examples of measured and predicted water retention curves for Method 1 (Eq. 9), Method 2 (Eq. 10) and ROSETTA software for: (a) clay soil (b) loam soil 

(c) sandy soil (d) sandy clay loam soil (e) sandy loam soil (f) sitly loam (g) silty clay soil (h) silty clay loam soil
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Table 2 
Average values of hydraulic parameters obtained from fitting Eq. 9 (Method 1) and Eq. 10 (Method 2) to PSD data. The standard 

deviations are presented in parentheses.

Soil texture Ɵs (L3·L-3)
Method 1 Method 2

n* (-) λ (-) n (-) α (L-1) n* (-) λ (-) n (-) α (L-1)

Clay
0.524 0.784 0.648 1.208 0.0046 0.773 0.649 1.188 0.0042

(0.065) (0.099) (0.070) (0.023) (0.0024) (0.124) (0.070) (0.062) (0.0033)

Loam
0.551 0.947 0.667 1.406 0.017 0.904 0.668 1.350 0.025

(0.176) (0.319) (0.213) (0.059) (0.015) (0.295) (0.213) (0.066) (0.016)

Loamy sand
0.388 1.949 0.793 2.449 0.022 1.568 0.793 1.975 0.030

(0.032) (0.309) (0.034) (0.292) (0.011) (0.164) (0.034) (0.180) (0.013)

Sand
0.342 2.725 0.814 3.375 0.024 2.584 0.814 3.231 0.020

(0.029) (0.070) (0.075) (0.416) (0.016) (0.607) (0.075) (1.000) (0.004)
Sandy clay 
loam

0.416 1.144 .820 1.393 0.040 1.036 0.820 1.264 0.070
(0.109) (0.117) (0.030) (0.104) (0.022) (0.046) (0.030) (0.019) (0.020)

Sandy loam
0.324 1.566 0.875 1.788 0.0205 1.345 0.875 1.533 0.0340

(0.075) (0.221) (0.079) (0.167) (0.0077) (0.194) (0.079) (0.126) (0.0121)
Silty clay 
loam

0.557 1.050 0.686 1.519 0.0039 1.060 0.686 1.532 0.0034
(0.073) (0.288) (0.043) (0.338) (0.0025) (0.298) (0.043) (0.351) (0.0025)

Silty clay
0.450 0.944 0.721 1.312 0.0030 0.966 0.722 1.346 0.0017

(0.129) (0.018) (0.045) (0.109) (0.0029) (0.071) (0.045) (0.188) (0.0008)

Silty loam
0.473 1.269 0.722 1.742 0.0048 1.098 0.722 1.516 0.0058

(0.117) (0.331) (0.131) (0.270) (0.0017) (0.231) (0.131) (0.133) (0.0025)

Average
0.445 1.374 0.756 1.789 0.0101a) 1.229 0.756 1.611 0.0129a)

(0.123) (0.549) (0.119) (0.594) (0.0163) (0.472) (0.119) (0.537) (0.0244)

a Geometric mean

Table 3
Comparison of average of RMSE, R2 and RI values of Method 1 (Eq. 9), Method 2 (Eq. 10) and ROSETTA software in predicting 

the SMC. The standard deviations are presented in parentheses.

Soil texture
RMSE R2 RI value

Method 1 Method 2 ROSETTA Method 1 Method 2 ROSETTA 1 vs. 2b R vs.2c

Clay
0.034 0.052 0.113 0.963 0.947 0.955 −0.425 0.558

(0.014) (0.035) (0.011) (0.075) (0.10) (0.169) (0.427) (0.264)

Loam
0.065 0.064 0.091 0.931 0.926 0.843 −0.042 −0.230

(0.079) (0.071) (0.099) (0.189) (0.202) (0.146) (0.208) (1.332)

Loamy sand
0.061 0.021 0.028 0.973 0.992 0.996 0.637 0.181

(0.012) (0.004) (0.011) (0.127) (0.162) (0.165) (0.151) (0.255)

Sand
0.080 0.009 0.029 0.950 0.998 0.982 0.072 0.020

(0.016) (0.005) (0.0186) (0.100) (0.164) (0.178) (0.018) (0.022)

Sandy clay loam
0.040 0.036 0.066 0.963 0.973 0.830 0.075 0.307

(0.015) (0.012) (0.052) (0.129) (0.130) (0.117) (0.104) (0.275)

Sandy loam
0.035 0.017 0.027 0.978 0.990 0.980 0.018 0.010

(0.007) (0.010) (0.008) (0.123) (0.158) (0.160) (0.007) (0.007)

Silty clay loam
0.041 0.041 0.139 0.984 0.994 0.909 −0.079 0.418

(0.015) (0.009) (0.054) (0.135) (0.148) (0.171) (0.268) (0.512)

Silty clay
0.023 0.026 0.118 0.988 0.989 0.737 −0.162 0.788

(0.010) (0.012) (0.046) (0.102) (0.115) (0.155) (0.302) (0.021)

Silty loam
0.047 0.035 0.069 0.962 0.973 0.943 0.308 0.632

(0.030) (0.035) (0.054) (0.152) (0.184) (0.165) (0.236) (0.265)

Average
0.048*a 0.034 0.069* 0.958 0.975* 0.910* 0.126ns 0.342ns

(0.033) (0.032) (0.060) (0.178) (0.186) (0.162) (0.342) (0.580)
a* indicates significant differences at P < 0.05; nsindicates not significant; bComparison of RMSE of Method 1 vs. Method 2; cComparison of RSME of 
ROSETTA vs. Method 2
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summarized in Table 3 by comparing the statistical criteria, 
including RMSE, R2 and RI. 

The average RMSEs of Method 1, Method 2 and the 
ROSETTA software are 0.048 (varying from 0.023 for silty clay 
soils to 0.080 for sandy soils), 0.034 (varying from 0.009 for 
sandy soils to 0.064 for loam soils) and 0.069 (varying from 
0.027 for sandy loam soils to 0.139 for silty clay loam soils), 
respectively. In terms of RMSE, Method 1 and Method 2 
predicted consistently better than ROSETTA software. The 
RMSEs derived from Method 1 and Method 2 are smaller than 
the 0.060 and 0.2071 obtained from the scaling approach by 
Meskini et al., (2014) and Mohammadi and Vanclooster (2011) 
(MV model), respectively. The RMSE results of the ROSETTA 
software in the current study (0.069) are approximately the 
same as for ROSETTA software by Meskini et al. (2014) (0.0745). 
Comparison of the performances of Method 1 and Method 
2 with the performance of ROSETTA software reveals that 
ROSETTA software is not capable of predicting SMC accurately 
in fine textured soils because of the fine particles. The average 
value of R2 for all selected UNSODA soil textures is 0.958, 0.975 
and 0.910 for Method 1, Method 2 and the ROSETTA software, 
respectively (Table 3). In terms of R2 values, Method 1 and 
Method 2 performed consistently better than the ROSETTA 
software. The small difference between the R2 values of Method 1 
and Method 2 is not statistically significant.

Overall comparison of developed model

Comparison of Method 1 and Method 2 according to the 
average RI value (0.126) indicated that, in general, the accuracy 
of the MV-VG model does not increase with an increased 
number of measured points of the PSD curve. However, the 
average RI value per texture class varies from –0.425 for clay 
soils to 0.637 for loamy sand soils. The RI values in comparison 
of Method 1 and Method 2 for clay, loam, silty clay loam, and 
silty clay textured soils were slightly negative, revealing that 
a low number of model inputs reduce the SMC accuracy in 
fine to moderate textured soils (Table 3). The average RI value 
for comparison of ROSETTA and Method 2 is 0.342 (varying 
from –0.230 for loam soils to 0.788 for silty loam soils), which 
indicated that, although ROSETTA and the limited PSD 
method require the same input data, Method 2 (limited PSD 
method) predicts SMC more accurately. 

In many pedological studies, sand, silt and clay percentages 
are measured routinely and this information is usually available 
in most soil survey reports. Method 2 can be used to predict 
SMC easily. Moreover, Method 2 does not need any empirical 
coefficient or database-dependent parameter. This advantage 
allows for prediction of the soil hydraulic characteristics 
regardless of spatio-temporal variations; thus SMC can be 
estimated for large-scale studies.

Table 4 represents statistical criteria to compare the 
measured vs. predicted moisture content using mean absolute 
error, mean bias error and R2 of linear regression. In terms of 
MAE, Method 2 predicts SMC more accurately. As can be seen 
in Table 3, that is also evident from comparing average values 
of RMSE and R2 obtained for Method 2 (0.034, 0.975) and 
Method 1 (0.048, 0.958) and ROSETTA software (0.069, 0.910). 
The negative MBE shows that Method 2 over-predicts SMC 
while Method 1 and ROSETTA under-predict.

Comparison of measured and predicted soil moisture 
content of the full dataset for Method 1, Method 2 and the 
ROSETTA software is respectively shown in Fig. 2 (a–c). 
In general, the 1:1 line shows the equal measured and 

Table 4
Statistical comparison of measured vs. predicted  

moisture content

Model Mean absolute 
error

Mean bias 
error R2a

Method 1 0.036 0.011 0.917
Method 2 0.026 -0.014 0.950

ROSETTA 0.061 0.046 0.827

Optimal value 0 0 1
aR2 is the determination coefficient of linear regression in Fig. 2 (a–c) 

Figure 2 (a–c)
Comparison of measured vs. predicted moisture content of 50 UNSODA 
soil samples. Predicted values were obtained using (a) Eq. 9 (Method 1) 

(b) Eq. 10 (Method 2) and (c) ROSETTA software. Solid line: 1:1 line, dashed 
red line: linear regression.
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predicted moisture content to reveal the bias of measured vs. 
predicted moisture content of the dataset. Linear regression 
(dashed red line) is considered to evaluate the best fitting 
line through predicted and measured moisture content. 
The slope values of linear regression between measured 
and predicted moisture content were 0.94 (Method 1), 0.93 
(Method 2) and 0.77 (ROSETTA software). The R2 of the 
linear regressions were 0.917, 0.950 and 0.827 for Method 
1, Method 2 and the ROSETTA software, respectively.  
According to the slope values, Fig. 2 (a–c) and MBE criteria, 
Method 2 slightly over-predicts moisture contents, while 
the ROSETTA software and Method 1 under-predict. 
Comparison of the proposed methods revealed that Method 
1 and Method 2 generally predict SMC more accurately 
than ROSETTA software, according to statistical criteria, 
including RMSE, RI, MBE and R2.

CONCLUSIONS

In this study, we adopted the MV-VG model for the prediction 
of SMC using only sand, silt and clay percentages, and we 
also evaluated the performance of this approach with the 
experimental data and results of ROSETTA software. Results 
showed that the continuous form of SMC can be predicted 
accurately assuming that sand, silt and clay percentages are the 
only known properties of the soil. Full PSD data are not usually 
available while sand, silt and clay percentages are measured 
conventionally in all soil analyses.

In general, we summarized the advantages of the proposed 
method for proper SMC prediction: (i) This method does not 
depend on a database or any empirical parameter. (ii) The 
proposed approach predicts continuous forms of SMC for all 
tested soils. (iii) In comparison with the well-known ROSETTA 
software, this method is capable of predicting SMC more 
accurately, especially in a dry range of SMC. Since sand, silt and 
clay percentages are readily available, soil properties and their 
spatial-temporal variability are approximately constant. The 
proposed method can be used as an alternative for predicting 
SMC in large-scale studies.
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