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ABSTRACT
Humans and wildlife are vulnerable to the toxicity of semi-volatile and persistent organic pollutants such as polychlorinated 
biphenyls (PCBs). Neither the distribution of these pollutants nor their seasonal variation has ever been determined in the 
Buffalo River. Thus, the occurrence and concentration of 19 PCBs was assessed in King William’s Town (KWT), Izele (IZ), 
Zwelitsha (ZW), Maden (MD), Mdantsane (MSN) and Buffalo River estuary (BRE), all on the Buffalo River in the Eastern 
Cape Province of South Africa. Water samples were subjected to liquid-liquid extraction for PCBs, after which the compounds 
were separated and quantified on gas chromatography with electron capture detection. The PCBs differ in concentration 
from below detection limit (BDL) to 482 ng·L−1 in summer and BDL to 2 383 ng·L−1 in autumn. While the order of congeners 
increases during the summer from KWT > IZ > ZW > MD > MSN > BRE, the distribution in autumn followed the order 
BRE > IZ > ZW > KWT > MSN > MD. The total levels of PCBs at all the sites during summer were below the World Health 
Organization (WHO) permissible level of 500 ng·L−1 recommended for humans, but were exceeded at all the sampling sites 
in autumn except at MD. The evaluated risk with respect to cancer was lower than the acceptable threshold (10-6), whereas 
hazard quotients were slightly higher than the maximum threshold (of 1) stated by the United States Environmental 
Protection Agency (USEPA). The compounds are known to be toxic to humans and animals. The results appear to show that 
the exposure levels of the compounds were safe for humans and animals. Further studies are recommended in order to make a 
definitive conclusion.
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INTRODUCTION

Anthropogenic activities are the major source of persistent 
organic pollutants (POPs). They are resistant to photolytic, 
biological and chemical breakdown. (Wonga et al., 2005). 
They are highly toxic, characterized by long persistence in the 
environment, low solubility in water, and are lipophilic (Wong 
et al., 2005). POPs are usually volatile and are transported in 
the environment in low amounts through movement in water 
and air, besides migration with animals (Vosloo and Bouwman, 
2005). They are basically classified into 3 categories: pesticides, 
industrial chemicals and by-products (El-Shahawi et al., 2010). 
Polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) 
are categorized as industrial chemicals (El-Shahawi et al., 2010). 
PCBs are used for fluid heat exchange in electrical transformers 
and capacitors (Lu et al., 2015; Huang et al., 2014; El-Shahawi 
et al., 2010), and create hazards to human and environmental 
health owing to their tendency to bioaccumulate and biomagnify 
in food production processes (Ozcan et al., 2009; Ramos et al., 
1995; Derouiche et al., 2007; Rissato et al., 2006; Salem et al., 
2014; Grimm et al., 2015; Kampire et al., 2017).

PCBs contain 209 congeners, of which 130 possibly occur 
during industrial processes such as the production of capacitors, 
adhesives, paints, transformers and plasticizers (Derouiche et 
al., 2007; Hope et al., 1997; Jacquet et al., 2014; Kim et al., 2010; 

Li et al., 2014). The organic contaminants usually find their way 
into the aquatic environment through various means including 
run-off, atmospheric deposition, and leakage from landfills 
containing industrial and/or municipal wastes, amongst others 
(Megahed et al., 2015; Kampire et al., 2017). Movement of 
PCBs from water to soil/sediment, or vice versa, could lead to 
gathering of dregs in farm products and water meant for human 
and animal consumption (Derouiche et al., 2007).

South Africa is a developing country with a heavy 
industrial presence. Large quantities of PCB congeners are in 
use in South Africa, both in private residences and industries 
(Kanzari et al., 2012), however, the appropriate facilities for 
destroying them after use are scarce; hence they penetrate the 
environment in one way or the other after disposal (Kampire 
et al., 2017). Organic pollutants, including PCBs, are in 
most cases discharged as effluents into water bodies through 
industrial activities and the caulking process at some estuaries 
(RHP, 2003). Previous studies centring on the status of some 
POPs in the aquatic environments of South Africa have been 
reported (Bouwman et al., 1990; Bouwman, 2003; Das et al., 
2008; Nieuwoudt et al., 2011). A number of researchers have 
recently addressed the concentrations of PCBs in certain 
water bodies in the country. For instance, Pieters (2007) 
assessed the status of PCBs, dibenzofurans and dioxins in the 
sediment samples collected from some rivers and estuaries 
in South Africa using GC/MS. Their findings indicated that 
the concentrations of the pollutants were extremely high in 7 
of the 22 sites investigated, with southern Gauteng Province 
recording the highest value (17.8 ng·kg−1 TEQ). Other locations 
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found with high levels included Swartkops Estuary, Umgeni 
River mouth, Modderfontein Spruit, Riet Spruit channel, Loch 
Vaal, Hartbeespoort Dam and Crocodile River.

Similarly, the levels of freely dissolved PCBs and two other 
classes of POPs, and their variation patterns across seasons in 
the water compartment of Hartbeespoort Dam, South Africa, 
were investigated by Amdany et al. (2014). The results of 
their analysis ranged from 38 pg·L−1 to 150 pg·L−1, and higher 
concentrations for most of the compounds examined were 
generally observed in winter than in other seasons of the year. 
Similarly, Kampire et al. (2017) determined the concentrations 
of 6 indicator PCBs (28, 52, 101, 138, 153 and 180) in surface 
sediments collected from North End Lake in Port Elizabeth, 
said to be the major recipient of runoff, industrial waste, 
and urban effluents from the surrounding suburbs, using 
gas chromatography-mass spectrometry (GC/MS). The total 
concentrations obtained varied between 1.60 and 3.06 ng·g−1 
dry weight (dw), with major contributions received from the 
most chlorinated samples.

A related work carried out in the northern region of the 
continent was also documented. Megahed et al. (2015) assessed 
the levels for 10 PCB congeners in water samples obtained along 
the course of the River Nile, Egypt, by means of GC coupled 
with an electron capture detector (ECD). The concentrations 
of the organic contaminants in the water samples ranged from 
14 – 20 μg·L−1. Most predominant was PCB−138 and more 
frequent at the sample sites were the extremely chlorinated 
ones. They also observed that the carcinogenic risk level was 
above the permissible range for all the age categories. Hence, 
the Egyptian population using the river water were considered 
to be at risk of developing cancer.

The pollution of the Buffalo River located in the Eastern 
Cape extends beyond the estuary leading to serious adverse 
impacts on marine and coastal ecosystems. The river traverses 
major towns and villages such as King William’s Town, Izele, 
Zwelitsha, Mdantsane and East London, carrying with it 
pollutants from domestic as well as industrial wastes. Some 
impoundments are built on this river which supplies water 
and other economic benefits to the nearby communities. 
One of the impoundments is the Laing Dam which supplies 
water to the towns of Zwelitsha, Bhisho, Berlin and parts of 
Mdantsane. A 50-year-old textile factory discharges its wastes 
into the Buffalo River upstream of the Laing Dam, and led 
to the death of a large number of aquatic animals in 2003 
(RHP, 2003). Previous pollution investigations on the river 
and its estuary include physicochemical and microbiological 
qualities (Dallas, 2008; Chigor et al., 2013), assessment of 
levels of heavy metals (RHP, 2004), pesticides (Fatoki and 
Awofolu, 2003; Yahaya et al., 2017) and total petroleum 
hydrocarbons (Adeniji et al., 2017) in various environmental 
media. However, reports on the status of polychlorinated 
biphenyls in the environmental compartments of the river are 
not available. The aims of this study were therefore to assess 
the distribution of PCBs in the surface water of Buffalo River 
and also to evaluate the level of health risk to humans.

MATERIALS AND METHODS

Description of the sampling sites

The Buffalo River, which is approx. 126 km long has its source 
in the Amathole Mountains and has 4 impoundments along 
its course, namely, Laing, Maden, Rooikrantz and Bridle 
Drift dams, providing water, nutritional and other economic 

benefits for communities such as King Williams Town, 
Zwelitsha and Mdantsane townships through which it passes 
before finally draining into the Indian Ocean in East London 
through its estuary. East London is a city with a considerable 
number of industries located along the course of the river 
into which hazardous industrial and domestic wastes as well 
as agricultural run-offs are discharged. A map indicating the 
sampling points is shown in Fig. 1 

The latitude and longitude of the sampling points are 
33°01′50.28″S and 27°51′29.01″E for Buffalo River Estuary 
(BRE), 32°58′53.65″S and 27°41′1.30″E for Mdantsane 
(MSN), 32°55′50.33″S and 27°25’50.01″E for Zwelitsha (ZW), 
32°52′46.30″S and 27°22′54.36″E for King William’s Town 
(KWT), 32°45′49.50″S and 27°22′27.08″E for Izele River (IZ) , 
32°44′23.54″S and 27°17′57.49″E for Maden Dam (MD).

Reagents and standards

A standard mixture containing 19 PCB congeners, as shown 
in Table 1, and decachlorobiphenyl (DCBP) used as surrogate 
standard were obtained from Ultra Scientific Analytical 
Solution, USA.

The HPLC grade n-hexane, dichloromethane and acetone 
used for the extraction and clean-up were sourced from Sigma 
Aldrich (Czech Republic) while analytical grade sulphuric 
(98%) and hydrochloric (37%) acids were procured from Merck 
(Germany). Ultra-pure nitrogen (99.99%) and helium gases 
for extraction and chromatographic analysis were supplied by 
Afrox Limited, South Africa.

All sample bottles, separating funnels, column and glass 
wares were washed with soap and dried in an oven at 150°C. 
Glass vials were washed with soap, soaked in acetone for 24 h 

Table 1
IUPAC (International Union of Pure and Applied Chemistry) 

name and code of the PCB congeners used

IUPAC Name Code

2-chlorobiphenyl PCB1
2,3-dichlorobiphenyl PCB5
2,2′,5-trichlorobiphenyl PCB18
2,4′,5-trichlorobiphenyl PCB31
2,2′,3,5-tetrachlorobiphenyl PCB44
2,2′,5,5′-tetrachlorobiphenyl PCB52
2,3′,4,4′-tetrachlorobiphenyl PCB66
2,2′,3,4,5′-pentachlorobiphenyl PCB87
2,2′,4,5,5′-pentachlorobiphenyl PCB101
2,3,3′,4′,6-pentachlorobiphenyl PCB110
2,2′,3,4,4′,5′-hexachlorobiphenyl PCB138
2,2′,3,4,5,5′-hexachlorobiphenyl PCB141 
2,2′,3,5,5′,6-hexachlorobiphenyl PCB151
2,2′,4,4′,5,5′-hexachlorobiphenyl PCB153
2,2′,3,3′,4,4′,5-heptachlorobiphenyl PCB170
2,2′,3,4,4′,5,5′-heptachlorobiphenyl PCB180
2,2′,3,4,4′,5′,6-heptachlorobiphenyl PCB183
2,2′,3,4′,5,5′,6-heptachlorobiphenyl PCB187
2,2′,3,3′,4,4′,5,5′,6-nonachlorobiphenyl PCB206
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and dried in an oven at 150°C. Silica gel used for this work 
was activated in the oven at 150°C and cooled in a desiccator 
before use. 

Sample collection

Grab samples of surface water were collected into 3 different 
amber glass bottles (1 L) from 100 mm depth and emptied 
into pre-cleaned dark brown bottles. This was done for each 
of the 6 sites from which samples were taken. Sampling was 
done between 7:00 and 10:00, in triplicate from 3 sampling 
points across the 6 locations, from December 2015 to May 
2016. Each sample was preserved with 5 mL of 98% sulphuric 
acid and water (1:1 ratio) and immediately transported 
in an ice-chest at 4°C to the laboratory for chemical 
analysis (USEPA, 2007). There was a halt in sample collection, 
particularly in IZ, ZW and KWT, due to the drought 
experienced in the winter period. 

Extraction and clean-up

About 500 mL of the water samples from each of the 5 
sites (MD, IZ, KWT, ZW and MSN) was spiked with 1 mL 
of 10 μg·mL−1 surrogate standard (Decachlorobiphenyl) 
and extracted 3 times with 30 mL of dichloromethane in 
a 1 L separating funnel (Ge et al., 2013). All samples were 
concentrated to about 3 mL in a rotary evaporator, solvent 
exchanged with 40 mL of n-hexane, re-concentrated and 
subjected to column clean-up (Ge et al., 2014; Pérez-Carrera et 
al., 2007; USEPA, 2007)

About 3 mL of the n-hexane extract was transferred into a 
250 mL separating funnel (in fume hood) and 6 mL of a mixture 
of sulphuric acid and water (1:1) was added. The mixture was 
allowed to separate for about 1 min into layers. The aqueous 
phase was drained off while the organic portion was retained 
in the separating funnel. About 5 mL of 5% aqueous potassium 
permanganate was added to the organic fraction and left to 
separate for a period of 2 min in the separating funnel. The 
organic layer was then drained out and passed through a glass 
chromatographic column (10 mm i.d × 30 cm) packed with a 
slurry made of 4 g of deactivated silica gel and 2 g of anhydrous 
sodium sulphate on top. The column was pre-washed with 
10 mL n-hexane, after which the sample extract was eluted with 
40 mL of n-hexane, concentrated to about 2 mL with a rotary 
evaporator at 37°C and analysed with gas chromatography with 
electron capture detection (GC-ECD) (Megahed et al., 2015; 
Yu et al., 2014, USEPA, 2007; USEPA, 2006). 

 Instrumental analysis

The PCB congeners were analysed using an Agilent 7820A 
GC coupled with ECD. The helium gas was used as a carrier 
under a continuous gas flow rate of 3.5 mL·min−1. About 1 µL 
of extract was injected at 250°C into the chromatograph with 
capillary column HP-5 (30 m × 0.25 mm × 0.25 µm). The oven 
temperature was maintained at 110°C for 0.1 min, ramped at 
25°C·min−1 to 200°C held for 0.5 min, then at 10°C·min−1 to 
240°C (held for 0.5 min) and finally ramped at 30°C·min−1 to 
325°C (held for 3 min). The runtime was 14.53 min and the 

Figure 1
Map of Buffalo River showing the six sampling sites along its course (RHP, 2004)
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detector temperature was 350°C, using nitrogen gas as make up 
at 30 mL·min−1 (Smith and Lynam, 2012).

Method of quantification

Stock solution of 19 PCB congeners (100 μg·mL−1 in 1 mL) 
standard mixture was diluted in acetone to prepare working 
standard solutions calibrated for a range between 10 and 
600 ng·mL−1. A decachlorobiphenyl (DCBP) solution 
(1 000 μg·mL−1 in 1 mL) was also diluted to 100 μg·mL−1 before 
being combined with the PCB standard for serial dilution 
into different concentrations for instrument calibration. The 
response factor was generated using Agilent Chemstation 
software and all the analyte and calibration curves were 
subsequently plotted by the instrument. The plots revealed a 
linear trajectory, with correlation coefficients that varied from 
0.9888 to 0.9993 (Table 2). The 19 PCBs in the sample extracts 
were thereafter quantified using the prepared calibration curves 
(Sibiya, 2012; Adeniji et al., 2017; Yahaya et al., 2017).

Quality assurance

All samples and double-distilled water were spiked with 
10 μg·mL−1 of surrogate standard (DCBP) to monitor the 
extraction efficiency, and percentage recoveries of surrogate 
were used to calculate the final concentrations of the 
compounds of interest in the sample extracts (Sibiya, 2012). 
A middle level PCB standard mixture (10 μg·mL−1) was run 7 
times for estimation of the limits of quantification (LOQ), the 

limits of detection (LOD) and the relative standard deviation 
(RSD) (Sibiya, 2012; DOE, 1997). 

Risk assessment

Risk assessments of the analytes were carried out in accordance 
with standard methods using average daily dose (ADD), and 
hazard quotient (HQ) (Lohmann et al., 2007; Pawelczyk, 2013; 
Ge et al., 2014; Megahed et al., 2015).  

The evaluation of ADD was done as expressed in Eq. 1 below.
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where ADD = intake exposure level (mg·kg−1·day−1); C = average 
concentration of PCBs (mg·L−1); FI = fraction ingested (0.98). 
IR = daily water intake based on age group: 0–6 yr = 0.3 L·day−1; 
7–17 yr = 1 L·day−1; adult = 1.4 L·day−1. EF = exposure frequency 
= 365 day·yr−1. ED = exposure duration based on age group: 
0–6 years = 6; 7–17 years = 11; adult = 30. BW = average body 
weight: 0–6 years = 15 kg; 7–17 yr = 46 kg; adults = 70 kg. AT = 
averaging times in days: AT (0–6 yr) = 2 190 days; AT (7–17 yr) 
= 4 015 days; AT (adult) = 10 950 days (Megahed et al., 2015).

Furthermore, the hazard quotient was estimated using 
Eq. 2 as shown below.
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where RfD = reference dose = 2.00 × 10-5 mg·kg=1·day=1 and HQ 
is unitless. 

In the same vein, cancer risk was calculated for the 
contaminants as demonstrated in Eq. 3.
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In this case, DI = daily input (2 L·day−1); ED = exposure duration 
(30 yr), BW = body weight (60 kg); CSF = cancer slope factor 
(0.07 mg·kg−1·day−1); CF = conversion factor (10–6); AT = average 
life span: (70 yr, for all age group). All the estimated values were 
therefore in agreement with standard methods (ECETOC, 2016; 
AMEC, 2010; Bozek et al., 2009; Hamilton et al., 2003; ECETOC, 
2001; USEPA, 1992) as reported by Megahed et al. (2015) and 
Yahaya et al. (2017) in their previous works.

Statistical analysis

Analysis of variance (ANOVA), mean, standard deviation and 
regression analysis were done using MINTAB version 12.11 
application software (p < 0.05). 

RESULTS 

Quality assurance

The surrogate recoveries for PCBs in the samples were between 
55% and 95% but ranged from 70% to 92% in the double-distilled 
water. The signal to noise ratio of the method was higher than 
5 (WDNR, 1996; Megahed et al., 2015; Yahaya et al., 2017) and 
relative standard deviation was acceptably low, ranging between 
1.18% and 14.1% (Zang et al., 2013; Amdany et al., 2014; Kampire 
et al., 2017). Moreover, the limits of detection and quantitation 
were obtained in ng·L−1 as shown in Table 2. The retention times, 

Table 2
Limit of detection (LOD), limit of quantification  

(LQD), relative standard deviation (RSD) and  
recovery study for PCBs

PCBs % Recovery LOD (ng·L−1) LOQ (ng·L−1) % RSD

PCB1 79 5 16 2.63
PCB5 70 332 1.058 13.48
PCB18 90 28 88 1.40
PCB31 74 54 172 2.73
PCB44 71.50 37 119 1.76
PCB52 81 37 119 1.76
PCB66 91 43 135 1.92
PCB87 90 32 104 1.52
PCB101 75.5 27 87 1.19
PCB110 70 35 113 1.48
PCB138 73 30 97 1.42
PCB141 88 29 95 1.41
PCB151 82.50 31 97 1.30
PCB153 70.50 39 125 1.37
PCB170 73 28 92 1.39
PCB180 70 35 112 1.49
PCB183 70 32 102 1.30
PCB187 80.50 28 92 1.18
PCB206 87.50 100 319 3.62
DCBP 92 17 172 14.1

n = number of replicates = 7; 1 ng·L−1 = 1.0 × 10-6 μg·mL−1  
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correlation coefficients (r2), linear equations and PCB standard 
mixtures were used for the calculation of concentrations and 
calibration curve as shown in Table 3 and Fig. 2.

Levels of PCBs in the Buffalo River

The number of PCB congeners detected at all of the sampling 
sites in summer was between 2 and 9 (Table 4). PCB 101, which 
had the highest concentration, was present at all the sites except 
MD. 11% of the total concentration of PCBs were detected at 
BRE and MSN. The total concentration of PCBs at IZ where 
maximum concentration was found ranged from below limit 
of detection (< LOD) to 482 ng·L−1. The frequency of detection 
of PCB 180, 183 and 187 was 100% at some sampling points 
in summer. In autumn, there was a remarkable increase in 
the number of PCBs detected from the 6 sampling locations 
(Table 5). At MSN, most of the analytes were 100% present but 
varied in detection frequency at other sites from 33% to 100%. 
The total PCB concentration varied from < LOD to 4 878 ng·L−1. 

The organic pollutants were more dispersed in summer 
than autumn. The highest level of PCBs in summer was 
recorded at KWT and the lowest at MSN. By contrast, the 
maximum and minimum concentrations in autumn were 
obtained at MSN and MD, respectively.	

DISCUSSION

Level and spatial variation of PCBs in the water samples

The increase in PCB levels in autumn, especially for PCBs 18 
and 170 could be due to industrial effluent discharge which was 
carried into the water body by rain (Xu et al., 2016; Megahed 
et al., 2015; Kalajzic et al., 1998). Furthermore, heavy PCB 
congeners (e.g. PCB 101) were detected at high concentrations 
in summer and autumn. This may be attributed to the input 
from municipal and industrial effluent discharge, including 
caulking (BRE, 2016; Zhang et al., 2004).

The higher level of PCBs in autumn at MSN could be as a 
result of rainfall, leaching from refuse at the dumpsite, waste 
release from Mdantsane sewage works, and the Potsdam 

treatment works that drains into the river. During the period 
of sampling, the water was noticeably green in colour, which 
could possibly be related to the discharge of waste from a food 
processing factory and a textile industry, entering through 
minor streams like Tindeli, Sitotana and Shangani that flow 

Table 3
Retention time, equation of the calibration curve and 

correlation coefficient (r2) of PCB congeners

PCBs Retention 
time Equation r2

PCB 1 3.987 y = 18 652 x 0.9948
PCB 5 5.056 y = 22 960 x 0.9911
PCB 18 5.29 y = 15 593 x 0.9984
PCB 31 6.072 y = 28 774 x 0.9961
PCB 44 6.539 y = 20 082 x 0.9946
PCB 52 6.841 y = 32 882 x 0.9888
PCB 66 7.434 y = 40 613 x 0.9908
PCB 87 7.766 y = 33 156 x 0.9993
PCB 101 8.187 y = 51 219 x 0.9889
PCB 110 8.34 y = 45 836 x 0.9988
PCB 138 8.525 y = 45 009 x 0.9888
PCB  141 9.085 y = 39 848 x 0.9899
PCB  151 9.279 y = 59 669 x 0.9903
PCB  153 9.49 y = 47 792 x 0.9903
PCB  170 9.695 y = 42 725 x 0.9987
PCB 180 9.756 y = 50 676 x 0.9904
PCB 183 10.28 y = 53 001 x 0.9907
PCB 187 10.599 y = 50 196 x 0.9908
PCB 206 11.481 y = 42 273 x 0.9893
DPCB 11.724 y = 36 756 x 0.9901

Figure 2
Typical chromatogram of the PCBs standard
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through Mdantsane into the Bridle Drift Dam (Chigor et al., 
2013; RHP, 2003; RHP, 2004).

Similarly, the concentrations were relatively higher in 
autumn than in summer at ZW. Suspected close sources of 
pollution to the sampling locations include influx of wastes 
from agricultural farm lands, refuse dumpsites, sewage outfalls 
and aerated treatment ponds (Yadav et al., 2015; Sarkar et al., 
2008). Higher concentrations recorded in autumn might be 
attributed to possible precipitation and sweeping of higher 
concentrations of pollutants into the water body as the level 
of rainfall increased. Similarly, the higher temperatures 
experienced in summer could have enhanced degradation of 
organic pollutants, resulting in the decreased concentrations 
witnessed in the water phase (RHP, 2004; Adeniji et al., 2017; 
Yahaya et al., 2017).

Furthermore, the high concentration of PCBs detected at 
KWT could be due to industrial effluent from a textile factory, 
an old tannery irrigation site and a saw mill, domestic waste, as 
well as sewage disposed from KWT into the water body (Fatoki 
and Awofolu, 2003; Olujimi et al., 2012; Bouraie et al., 2011). It 
has been reported that decomposition of PCBs decreases with 
an increase in the amount of chlorine (Duan et al., 2015; Huang 
et al., 2015). More so, previous findings showed that light PCBs, 
such as those with 2, 3 or 4 chlorine atoms, volatilized from the 
topmost water level. This could explain the presence of heavy 
PCBs such as the hexa-, hepta-, octa- and nona-chlorobiphenyls 
that were found in high concentrations in the autumn 
(Gui et al., 2014; Ge et al., 2014; Huang et al., 2014; Lohmann 
et al., 2007). Temperature, pH and oxidation reactions could 
be responsible for variation in concentrations of the analytes 
across the seasons of the year (RHP, 2004).

The river water at Izele town was also found to have higher 
concentrations of the congeners in autumn than summer, 
possibly because of the influx of domestic and agricultural 
wastes, and less volatilization in this season (Kishida, 2013; 
Toan, 2015; Fatoki and Awofolu, 2003).

Although, MD is often assumed to be pristine in view of 
the low number of anthropogenic impacts relative to other 
parts of the catchment, long-distance air transport of these 
pollutants from the suburb are suspected (Chao et al., 2014; 
Ren et al., 2014; Hung et al., 2013; Adeniji et al., 2018). The sum 
total concentrations of PCBs in summer and autumn were high 
when compared with findings reported for other studies in 
South Africa, China, Iran, USA and Brazil, but in summer the 
results were lower, and in autumn were higher than findings 
reported from Egypt (Megahed et al., 2015) and Spain (Prieto 
et al., 2007). Previous work on PCB concentrations in a surface 
water in Johannesburg, South Africa, reported concentrations 
that ranged from 21 to 120 ng·L−1 (Amdany et al., 2014). Seasonal 
variations have also been reported. For example, Hassan et al. 
(2013) reported 10–250 ng·L−1 and 20–390 ng·L−1 in cold and 
warm seasons, respectively, in Iran, whereas 3.17–6.09 ng·L−1 
in winter and 0.19–0.99 ng·L−1 in summer were reported in 
China (Ge et al., 2014), and 0.02–0.5 ng·L−1 for surface water 
in Brazil (Pérez-Carrera et al., 2007), 3 884–4 314 ng·L−1 for 

Spain (Prieto et al., 2007), 0.31−42.75 ng·L−1 in the USA’s Lake 
Ontario (Oliveira et al., 2011) and a high value of 5 344 ng·L−1 was 
reported for the River Nile, Egypt (Megahed et al., 2015).

The essence of monitoring PCB-contaminated water is to 
reduce the health risk to humans as well as wildlife (Hope et 
al., 2008). A target value of 500 ng·L−1 has been recommended 
by the United States Environmental Protection Agency 
(USEPA) as the permissible limit (USEPA, 2012). The PCB 
concentration determined along the course of Buffalo River in 
autumn was however higher than the USEPA-recommended 
maximum limit, except for the value obtained from the 
Maden Dam. 

Risk assessment

The period of exposure to organic pollutants is a key factor to 
be considered in assessing the health risk of a living organism 
(Sethajintanin and Anderson, 2006; Budroe et al., 2002). The 
Hazard Quotient (HQ), is the ratio of possible health exposure 
to a pollutant and the level at which no health effect is expected; 
if HQ is less than 1 then no health effects at the level of 
exposure are indicated (ECETOC, 2016; Megahed et al., 2015; 
AMEC, 2010; Hamilton et al., 2003; ECETOC, 2001; USEPA, 
1992). The HQ of this river body was generally above 1. Since 
the HQ, ADD and LADD were above the permissible limit of 
10-4, there are high ecological and health risks (USEPA, 2009; 
USEPA-IRIS, 2007).

HQs obtained across the sampling sites were generally 
higher than 1 for all the PCB congeners.  The value obtained for 
age group 7–17 years was higher than for other two categories 
(Table 6), indicating that people within this group are likely to 
experience more detrimental effects of non-carcinogenic risk 
as a result of exposure to water polluted by PCBs than others. 
However, the cancer risk value estimated as shown in Table 6 
was extremely low compared to the acceptable range of 10−4 to 
10−6 for all the pollutants. Therefore, there is less likelihood of 
anyone developing cancer by ingesting the Buffalo River water, 
especially those in the rural areas who have less access to the 
public water supply (EPA, 1993, 2005; Megahed et al., 2015; 
ECETOC, 2016).

CONCLUSION 

The concentrations of PCBs in the samples were found to 
be generally higher than the World Health Organization 
drinking water (WHO) and USEPA-recommended 
permissible limits at the six monitored locations, respectively. 
Although, there is not a likelihood of the users of Buffalo 
River water developing cancer, high levels of these chemicals 
in the water imply high exposure risk to the immediate 
communities subsisting on resources from the water as well as 
to the general population, since the pollutants will disperse up 
to several kilometres from the contamination source and may 
persist for decades, given their high half-lives. Hence, there 
is a need for strict control and regulations on the use and 

Table 6
Individual average daily dose (ADD), hazard quotient (HQ) and cancer risk for PCB congeners in summer and autumn

ADD0-6 (x 10−4) ADD7−17 (x 10−4) ADDadt (x 10−4) HQ0-6 HQ7−17 HQadt Cancer risk (x 10−12)

∑PCB 1.0268 1.116 1.0268 5.1337 5.5801 5.1337 5.2385
HQ0-6: HQ for 0–6 yr, HQ7−17: HQ for 7–17 yr, HQadt: HQ for adults, ADD0-6: ADD for 0–6 yr, ADD7−17: ADD for 7–17 yr, ADDadt: ADD for adults. ADD 
are in mg·kg−1·day−1
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safe disposal of these organic chemicals in order to safeguard 
the health of the inhabitants of the communities in the 
neighbourhood of the river. To the best of our knowledge this 
was the first time the distribution of these compounds in this 
river was determined and the risks were assessed. 
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