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ABSTRACT

Seasonal-to-interannual hindcasts (re-forecasts) for December-January-February (DJF) produced at a 1-month lead-time by 
the ECHAM4.5 atmospheric general circulation model (AGCM) are verified after calibrating model output to DJF rainfall at 
94 districts across South Africa. The AGCM is forced with SST forecasts produced by (i) statistically predicted SSTs, and (ii) 
predicted SSTs from a dynamically coupled ocean-atmosphere model. The latter SST forecasts in turn consist of an ensemble 
mean of SST forecasts, and also by considering the individual ensemble members of the SST forecasts. Probabilistic 
hindcasts produced for two separate category thresholds are verified over a 24-year test period from 1978/79 to 2001/02 
by investigating the various AGCM configurations’ attributes of discrimination (whether the forecasts are discernibly 
different given different outcomes) and reliability (whether the confidence communicated in the forecasts is appropriate). 
Deterministic hindcast skill is additionally calculated through a range of correlation estimates between hindcast and 
observed DJF rainfall. For both probabilistic and deterministic verification the hindcasts produced by forcing the AGCM 
with dynamically predicted SSTs attain higher skill levels than the AGCM forced with statistical SSTs. Moreover, ensemble 
mean SST forecasts lead to improved skill over forecasts that considered an ensemble distribution of SST forecasts. 
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INTRODUCTION

South Africa’s seasonal rainfall variability is associated with 
different levels of predictability and is dependent on the time of 
the year: Spring (September-October-November) season rain-
fall totals are for the most part not predicted with high confi-
dence owing to the fact that this season is mostly influenced 
by transient weather systems, while the best forecast skill has 
been demonstrated during mid-summer (Landman et al., 2005; 
Landman et al., 2012) when the tropical atmosphere starts to 
dominate the atmospheric circulation over South Africa (e.g. 
Mason et al., 1996; Landman and Mason, 1999). Some useful 
prediction skill is also found during austral autumn (Landman 
et al., 2005). However, the modelling work presented here only 
focuses on mid-summer (December to February – DJF), owing 
to the relatively high skill found for this season (Landman et 
al., 2005; Landman et al., 2009; Landman et al., 2012), and 
because the larger part of South Africa’s austral summer rain-
fall areas receive most of their rainfall during this season. 

The use of dynamically based atmospheric models as real-
time operational seasonal forecasting tools has been practised 
in South Africa since the turn of the century (e.g. Landman 
et al., 2001). Major advances in the use of atmospheric general 
circulation models (AGCMs) for operational seasonal forecast-
ing in South Africa also continued to occur at the Universities 
of Cape Town and of Pretoria, and at the Council for Scientific 
and Industrial Research. A notable recent advancement is 

the development of a fully coupled ocean-atmosphere model 
at the South African Weather Service (SAWS; Beraki et al., 
2014). In addition, a notable acquisition by SAWS is the World 
Meteorological Organisation’s Global Producing Centre for 
Long-Range Forecasts (GPCLRF) status. As part fulfilment of 
this obligation, SAWS runs the ECHAM4.5 AGCM (Roeckner 
et al., 1996) operationally, and so this model is the focus of 
this paper. However, the ECHAM4.5 forecast ensembles 
used in this study are obtained from the Data Library of the 
International Research Institute for Climate and Society (IRI) 
and not from the archives of SAWS, since the IRI archived data 
set of this AGCM is more comprehensive. For example, the 
IRI has available a variety of ECHAM4.5 hindcast sets and for 
various forecast lead-times. These archived sets can be used to 
help determine some of the modelling strategies that SAWS, 
and possibly other institutions in South Africa involved with 
AGCM operations, can follow in order to optimise their own 
operational seasonal forecasting systems. 

Employing predicted or persisted SST anomalies in AGCMs 
provides a means of generating forecasts of seasonal-average 
weather (Graham et al. 2000; Goddard and Mason, 2002), 
since the evolution of global sea-surface temperature (SST) 
anomalies over several months ahead is predictable, especially 
over the tropics, even with statistical models (Landman and 
Mason, 2001). Coupled ocean-atmosphere general circulation 
models (CGCMs) have also been increasingly used worldwide 
for operational seasonal forecast production (e.g. DeWitt, 2005; 
Graham et al., 2011).  Furthermore, it has been shown through 
the DEMETER (Development of a European Multimodel 
Ensemble system for seasonal to inTERannual prediction) 
project that fully coupled systems can predict both the evolu-
tion of SSTs and atmospheric conditions at elevated levels of 
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skill (Palmer et al., 2004) relative to AGCM skill (Graham et 
al., 2005). The foundations laid by the DEMETER and other 
projects contributed towards the development of a coordinated 
system for seasonal to decadal prediction, assessed via a com-
prehensive set of 46 years of hindcasts produced by state-of-
the-art climate models (Van der Linden and Mitchell, 2009). 
Notwithstanding these modelling developments, when skilful 
SST forecasts are used AGCMs may perform equally as well as 
the current CGCMs (Troccoli et al., 2008), and so CGCMs can 
benefit AGCMs by applying their predictions of SST evolution 
to force AGCMs (Li et al., 2008). This study investigates to what 
extent an AGCM’s mid-summer seasonal forecasts for South 
Africa is sensitive to the SST forecasting strategy selected to 
force the atmospheric model. Mid-summer is the season often 
associated with the highest level of skill (Landman et al. 2012) 
and therefore the effect various modelled options of the forcing 
SST fields may have on the AGCM’s forecast skill for specifi-
cally mid-summer rainfall totals over South Africa is the main 
focus of the paper. 

DATA AND METHODS

The district rainfall data set of the South African Weather 
Service (Van Rooy, 1972) was used to calculate 3-month DJF 
seasonal rainfall totals for 94 evenly distributed locations 
across South Africa (cf. Fig. 4 for the locations of the centroids 
of the districts). This data set is available from 1921 and is 
updated every month. Here we consider only the rainfall data 
from 1968 through 2002 in order to match the available AGCM 
hindcasts used in this paper. 

The ECHAM4.5 AGCM hindcast data used here are 
obtained from the Data Library of the IRI (IRI, 2013) and con-
sists of 3 sets. Each of the three AGCM experiments was com-
posed of an ensemble of 24 integrations. The atmospheric initial 
conditions for all three experiments are described in Li et al. 
(2008). In summary the atmospheric initial conditions for each 
of the three sets of experiments at any given start time are iden-
tical and were generated by adding random machine precision 
level perturbations to the wind field during the model spinup 
period; thus no observed initial conditions were used for any 
of the experiments. The first AGCM set (available from 1957 to 
July 2008) consists of 24 ensemble members and was produced 
by forcing each of the 24 runs with identical SST anomalies that 
were predicted using constructed analogues (Van den Dool, 
1994). The two additional AGCMs sets, also consisting of 24 
ensemble members each and available from 1958 to 2001, were 
a result of forcing the atmospheric model with two separate 
configurations of dynamically predicted SST. The first of these 
sets was a result of forcing each of the 24 AGCM runs with the 
identical ensemble mean of ECMWF SST forecasts (9 mem-
bers) created during the DEMETER project. The second set of 
AGCM forecasts forced with dynamically predicted SST was 
created by considering each of the nine ECMWF SST ensemble 
members – a scenario of SST forecasts was therefore considered 
by using some SST ensemble members 3 times, and some only 
2 times, in order to produce a set of 24 AGCM ensemble mem-
bers. The least number of times an SST ensemble member was 
used was 2 and no ensemble members were identical. The three 
experiments only differ in their prescribed SST forcing. Take 
note that the SST anomalies from the coupled model runs were 
added to the observed climatology, subsequently removing the 
mean bias in the SST from the coupled model. Owing to the 
availability of archived DEMETER hindcasts, only a 1-month 
lead-time is considered here which implies that DJF hindcasts 

were produced near the beginning of November.  
Empirical downscaling or recalibration of GCM fields to 

regional rainfall has already been successfully employed for 
southern Africa (e.g. Landman and Goddard, 2002, Landman 
and Beraki, 2012) and it has been shown conclusively that 
empirically post-processing GCM large-scale fields is a nec-
essary requirement for optimal seasonal rainfall forecast 
performance for South Africa, especially for mid-summer 
predictions (e.g., Landman and Goddard, 2002; Shongwe et al., 
2006). Model output statistics (MOS; Glahn and Lowry, 1972) 
equations are developed here because they can compensate 
for systematic deficiencies in the global models directly in the 
regression equations (Wilks, 2011). Variables such as large-
scale atmospheric circulation are better simulated by most 
models than rainfall and should probably be used instead in 
a MOS system to predict seasonal rainfall totals. In fact, the 
model’s 850 hPa geopotential heights have been found to be a 
proven southern African seasonal rainfall predictor using MOS 
(Landman and Goddard, 2002; Landman et al., 2005; Landman 
et al., 2009, 2012; Landman and Beraki, 2012) and this field is 
again used here as predictor. The predictor sets are the ensem-
ble means for each of the three 24-member AGCM experiments 
and the predictand the 94 South African districts which remain 
the same for each experiment. The predictor fields used in the 
MOS are restricted over a domain that covers an area between 
the Equator and 45°S, and 15°W to 60°E. This domain is large 
enough in order to capture both the rain- and drought-produc-
ing low-level circulations as represented by the various model 
configurations. The MOS equations are developed by using the 
canonical correlation analysis (CCA) approach described in 
Barnett and Preisendorfer (1987); the downscaling procedure 
is reported on in detail in earlier work as applied to southern 
African seasonal rainfall prediction (Landman et al., 2001; 
Landman and Beraki, 2012; Landman et al., 2012). 

In order to minimise artificial inflation of forecast skill, 
the downscaled forecast performance should mimic a true 
operational forecasting environment where no prior knowl-
edge of the coming season is available. The MOS models are 
first trained with information from 1968/69 leading up to and 
including 1977/78. The first MOS training period is therefore 
10 years. The seasonal rainfall of the next year, 1978/79, is then 
predicted using the trained MOS model. The MOS model is 
subsequently retrained using information leading up to and 
including 1978/79 (11 years) to predict for 1979/80 conditions. 
This procedure is continued until the 2001/02 DJF rainfall is 
predicted using a MOS system trained with data from 1968/69 
to 2000/01, resulting in 24 years (1978/79 to 2001/02) of inde-
pendent downscaled forecast data. Such a procedure is referred 
to as retro-active forecasting (e.g. Landman et al. 2001). Cross-
validation (Michaelsen, 1987) is performed over the entire 
34-year period from 1968/69 to 2001/02. In order to minimise 
the chance of obtaining biased results a large 5-year-out win-
dow is used. The first 10 years are subsequently discarded 
resulting in 24 years of cross-validated downscaled hindcast 
(deterministic) over the same period as the retro-active down-
scaled forecasts, i.e., 1978/79 to 2001/02.

The skill of the three AGCM-MOS systems (the AGCM 
forced with statistically predicted SST and the same AGCM 
forced with two different configurations of ECMWF SST fore-
casts) is determined both probabilistically and deterministi-
cally. Probabilistic verification is conducted on the 24 years  
of retro-active DJF rainfall forecasts, while deterministic veri-
fication is performed on the 24 years of cross-validated hind-
casts. For the former, the observed and predicted fields are 
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separated into 3 categories, defining above-normal, 
near-normal and below-normal DJF rainfall totals. 
Two approaches are adopted here: The first is the 
familiar equi-probable 3-category description (the 
thresholds are respectively the 33rd and 67th per-
centile of the climatological record) and the sec-
ond approach defines the below- and above-normal 
threshold values respectively by the 15th and 85th 
percentile values of the climatological record, i.e., 
seasonal extremes. Probabilistic MOS forecasts for 
each of the 24 retro-active years are obtained from 
the error variance of the cross-validated predictions 
using the ensemble mean (Troccoli et al., 2008) for 
each of the various training periods required for 
generating the retro-active forecasts. Verification 
results of only the above-normal and below-normal 
categories are presented owing to the low skill found 
for the near-normal category. 

Two of the main attributes of interest for proba-
bilistic forecasts are discrimination (whether the 
forecasts are discernibly different given different 
outcomes), and reliability (whether the confidence 
communicated in the forecast is appropriate). The 
forecast verification measures presented here for 
testing of the aforementioned attributes are the 
relative operating characteristic (ROC) (e.g. Mason 
and Graham, 2002), and the reliability diagram 
(Hamill, 1997). A ROC graph can be constructed 
by plotting the forecast hit rates against the false-
alarm rates. For good forecasts the hit rate will 
accumulate faster than the false-alarm rate, result-
ing in a ROC graph that curves towards the upper 
left. For perfect discrimination the area beneath the 
curve would be 1.0, and for no skill the area beneath the curve 
would be 0.5 (the ROC curve will coincide with the diagonal) or 
lower. ROC applied to probabilistic forecasts indicates whether 
the forecast probability was consistently higher when a flood or 
drought season occurred compared to when it did not occur. 
Although the ROC is a verification procedure recommended by 
the World Meteorological Organisation, it has been criticised 
because the reliability of the forecast probabilities is ignored 
(Troccoli et al., 2008). 

Forecasts are considered reliable if there is consistency 
between the predicted probabilities of the defined rainfall 
categories and the observed relative frequencies of the observed 
rainfall being assigned to these categories. The reliability 
diagrams presented below are used to assess if the downscaled 
models are able to produce well-calibrated probability forecasts 
and include reliability curves for the above- and below-normal 
categories along with their respective least-squares regres-
sion lines. The regression lines are calculated with weighting 
relative to how frequently forecasts are issued at a given con-
fidence. Forecasts are considered perfectly reliable when these 
weighted regression lines lie perfectly along the diagonal of 
the reliability diagram, but when the regression lines lie above 
(below) the diagonal observed above- or below-normal values 
tends to occur more (less) frequently and then the forecasts are 
considered under-confident (over-confident). Frequency histo-
grams are also included and show the frequencies with which 
forecasts occur in probability intervals of 10%, starting at 5%. 
The ROC graph has an advantage over the reliability diagram 
in being less sensitive to sampling errors, and so can be more 
meaningfully constructed given the small sample sizes typical 
of seasonal forecasting (Troccoli et al. 2008). The interpretation 

of ROC scores and reliability diagrams in general can be found 
in Troccoli et al. (2008), Barnston et al. (2010), Wilks (2011) and 
Jolliffe and Stephenson (2012), among others. 

For the deterministic verification work 3 correlation values 
are calculated: Pearson or ‘ordinary’ correlation to measure the 
association between the deterministic cross-validated hindcasts 
and the DJF rainfall at each district over the 24 years, and the 
robust and resistant alternatives to the Pearson correlations, 
namely, the Spearman rank correlation and Kendall’s tau. 
The Spearman correlation is simply the Pearson correlation, 
but using the ranks of the hindcasts and of the observations. 
Kendall’s tau is calculated by considering the relationships 
among all possible matchings of the hindcast and observation 
pairs (Wilks, 2011). Spearman and Kendall’s tau (both are non-
parametric tests) are better suited than Pearson for verification 
of precipitation since rainfall has a non-Gaussian distribution. 
What additionally makes the Kendall’s tau attractive is that it 
has close affinities to the area beneath the ROC curve (Jolliffe 
and Stephenson, 2012), used here for verification of the proba-
bilistic retro-active forecasts.

Model performance

The deterministic retro-active DJF rainfall forecasts across 
the 94 districts and over the 24-year test period (1978/79 to 
2001/02), from each of the three AGCM-MOS models along 
with the observed, are shown in Fig. 1. Both predicted and 
observed values are normalised since the rainfall distribution 
over South Africa varies from wet over the eastern parts to 
semi-arid to arid over the western parts. El Niño (marked ‘El’) 
and La Niña (marked ‘La’) seasons are also shown on the figure. 

Figure 1
Statistically downscaled DJF rainfall indices across 94 South African rainfall districts 
over 24 years produced by using a retro-active prediction procedure. The top panel 

shows the forecasts produced when the AGCM is forced with statistical SST, the 
second panel when the AGCM is forced with the ensemble mean SST of a coupled 

model, the third panel when forced with a spread of SST ensemble members of 
a coupled model, and the bottom panel is the observed DJF rainfall indices. DJF 

forecasts are produced in early November.
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El Niño and La Niña seasons are identified according to  
the Oceanic Niño Index (CPC, 2013). The top panel of  
Fig. 1 shows each district’s DJF rainfall index as predicted by 
the AGCM forced with statistical SST. Below that are the rain-
fall index forecasts produced by the AGCM forced with the 
two SSTs configurations of the ECMWF coupled model. From 
the figure one notices the similarities between the middle two 
panels (AGCM forced with ECMWF SST) and that these two 
forecasts are somewhat different to the forecasts shown in the 
top panel (forcing the AGCM with statistical SST), especially 
during the late 1980s and the first half of the 1990s. Take 
note that the three forecast systems tend to predict dry (wet) 
conditions during El Niño (La Niña) seasons, although it may 
not always turn out to be dry (wet) during El Niño (La Niña) 
seasons as can be seen when the forecasts are compared to 
the observed (bottom panel). Next we will do proper verifica-
tion over the 24-year test period in order to determine how 
the various forecast systems compare with the observed and 
subsequently with each other.

Skill levels of the retro-active downscaled probabilistic 
forecasts of the three AGCM-MOS models are shown in Figs 
2 and 3 (ROC scores and reliability diagrams, respectively). 
Figure 2 shows that the highest ROC scores are found when 
forcing the AGCM with the SST forecasts from the coupled 
ECMWF model. Moreover, the forecasts associated with the 
ECMWF SST ensemble mean are also somewhat superior to the 
forecasts associated with the ECMWF SST ensemble spread. 
Furthermore, the higher ROC scores are found for the extreme 
cases (respectively lower and higher than the 15th and 85th 
percentile values), especially when predicting for extremely wet 

seasons. The reliability plots of Fig. 3 are for the extreme cases 
only and show very similar results for both cases of ECMWF 
SST predictions, but show lower reliability when using this 
statistical SST forecast model: The regression lines on Fig. 3 
(weighted least-squares regression of the respective reliability 
curves) are close to the diagonal for the ECMWF SST forced 
extreme forecasts, but show over-confidence (regression lines 
are shallower than the diagonal) for the statistical SST forced 
forecasts, especially for predicting extremely dry years. None 
of the three forecast systems show strong sharpness (the level 
of confidence that is communicated in the forecasts), since the 
most frequent forecast category is near 15%, the climatologi-
cal probability for the extreme cases. The verification results 
presented thus far agree with what has been suggested by the 
forecasts shown in Fig. 1: The AGCMs forced with SSTs pre-
dicted by the coupled model are superior to the AGCM forced 
with statistical SST, and that the two SST scenarios resulted 
in similar levels of skill although the AGCM forced with an 
ensemble mean SST seems superior. 

The AGCM forced with statistical SST is thus considered to 
be the weakest of the three systems and so we subsequently find 
out the locations in South Africa where the AGCMs forced with 
ECMWF SST are superior. For this analysis we use Kendall’s 
tau owing to its close affinities to ROC scores (Jolliffe and 
Stephenson, 2012). Kendall’s tau correlations between retro-
active forecasts of the three AGCM-MOS models and observed 
DJF rainfall indices are subsequently calculated. Figures 4a and 
4b respectively show the Kendall’s tau difference per district 
between the AGCM forced with statistical SST and the AGCM 
forced with the ECMWF SST ensemble mean, and the differ-
ence per district between the AGCM forced with statistical SST 
and the AGCM forced with members of the ECMWF SST fore-
casts. Negative correlation differences show where the AGCM 
forced with ECMWF SST is superior. The statistical signifi-
cance of these differences is calculated by a re-randomisation 
or Monte Carlo test (Livezey and Chen, 1983; Wilks, 2011). 
This test is done by randomly resampling the observed data of 
each district, followed by calculating the Kendall’s tau correla-
tions for each retro-active forecast set using the re-randomised 

Figure 3 (above)
Reliability (top row) and frequency (bottom row) diagrams for the downscaled DJF extreme 

rainfall forecasts. The reliability diagrams show both the reliability curves for very wet and very 
dry seasons, and their associated weighted least-squares regression lines. The histograms indicate 

the frequencies for forecasts of probabilities of < 5%, 5–15%, etc.

Figure 2 (above)
Relative operating characteristic (ROC) scores for wet (top panel; upper 
terciles and 85th percentile threshold) and for dry (bottom panel; lower 

terciles and 15th percentile thresholds) conditions during DJF over South 
Africa. The ROC scores are calculated over a 24-year test period for 

predictions made early November by an AGCM forced with constructed 
analogue (ca_sst), ECMWF ensemble spread (ECMWFsc) and ECMWF 

ensemble mean (ECMWFem) SST forecasts, and then statistically 
downscaled to district level. 
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observed data, and then calculating the correlation differences. 
The procedure is repeated 1 000 times and the differences for 
each district sorted. Districts with Kendall’s tau differences 
significant at the 90% level of confidence are marked with an 
asterisk, those at 95% with a double asterisk, and those at 99% 
with a triple asterisk. Most of the districts are associated with 
negative differences and the biggest improvement is found over 
the central parts of South Africa where most of the statistically 
significant differences are also found. 

The AGCM forced with the ECMWF SST ensemble mean 
shows the largest improvement over the AGCM forced with 
statistical SST. Figures 5a and 5b show the Kendall’s tau corre-
lations between the retro-active forecasts of the AGCM forced 
with the ECMWF SST ensemble mean, and the correlations 
between the retro-active forecasts of the AGCM forced with 
the ECMWF ensemble members, respectively. Significance is 
once again calculated using a Monte Carlo test. Correlations 

significant at the 90% level of confidence are marked with an 
asterisk and correlations significant at 95% with a double aster-
isk. Comparing Fig. 5a with Fig. 5b confirms the verification 
results above, and shows the AGCM forced with the ensemble 
mean SST to be superior. Moreover, this conclusion is further 
confirmed using the Spearman rank as well as the (ordinary) 
Pearson correlation. Figure 6 represents the number of districts 
(out of 94) with local significance at respectively the 90% and 
95% level of confidence for all three correlation parameters 
calculated from the retro-active forecasts. A larger number of 
districts found to be significant implies that a larger area of 
South Africa is associated with significant correlations. For 
both levels of confidence and all three correlations, the AGCM 
forced with the ensemble mean SST of the ECMWF coupled 
model is found to be the best configuration for DJF rainfall 
predictions over South Africa.  Also take note that the non-
parametric rank correlations are generally more conservative 

Figure 5
Kendall’s tau correlations over 24 years between observed DJF rainfall indices and a) retro-active forecasts of the 

AGCM forced with the ECMWF SST ensemble mean, and b) retro-active forecasts of the AGCM forced with the ECMWF 
ensemble members. Correlations significant (1-tailed test) at the 90% level of confidence are marked with an asterisk 

and correlations significant at 95% with a double asterisk.

Figure 4
Kendall’s tau correlation differences. Correlations are first calculated over 24-years between retro-active forecasts 

produced respectively by each of the AGCM forecast systems and the observed. Kendall’s tau differences are shown per 
district between the a) AGCM forced with statistical SST and the AGCM forced with the ECMWF SST ensemble mean, 

and b) the difference per district between the AGCM forced with statistical SST and the AGCM forced with members of 
the ECMWF SST forecasts. Negative correlation differences show where the AGCM forced with ECMWF SST is superior. 

Correlation differences significant (1-tailed test) at the 90% level of confidence are marked with an asterisk, differences 
significant at 95% with a double asterisk, and those significant at 99% with a triple asterisk.
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(fewer districts with local significance) than the Pearson cor-
relation that requires that the predicted and observed values are 
normally distributed. 

Two approaches for creating model forecasts for test-
ing have been presented here: cross-validation and retro-
active forecasting. For the MOS downscaling, the Climate 
Predictability Tool is used, and this software uses cross-
validation to generate the required error variances for the 
subsequent creation of retro-active probability forecasts 
(Troccoli et al., 2008). This configuration may pose problems 
with short data sets owing to the even shorter initial training 
period. In fact, the initial training period used in this paper 
for predicting the first retro-active year (1978/79) is only 10 
years (1968/69 to 1977/78), and so the question arises whether 
such an initial small sample, albeit incrementally increased by 
one year during the retro-active forecast procedure, impacts 
negatively on the forecast skill of the systems being tested. 
Figure 7 shows, for each AGCM system, the differences of the 
predicted DJF rainfall indices between the cross-validation 
hindcasts and the retro-active forecasts. Shadings of blue (red) 

show where and when the retro-active process has predicted 
anomalies larger (smaller) than those of the cross-validation 
hindcasts. At the bottom of the figure an area-averaged time-
series over the verification period for each AGCM configura-
tion is also presented. The time-series represent the observed 
(grey), cross-validated (red) and retro-active (blue) area-aver-
aged values. With the exception of a small number of cases 
(e.g. 1987/88 of the ECMWF SST spread), the cross-validated 
and retro-active forecasts are in strong agreement. This result 
has provided evidence that the retro-active procedure fol-
lowed in this paper may not have been negatively impacted by 
the initial small samples used to predict over the 24-year test 
period, since it produced similar results to the cross-valida-
tion procedure. 

DISCUSSION AND CONCLUSIONS

Coupled models represent the state-of-the-art in seasonal 
climate forecasting. However, given perfect SST to force an 
AGCM, i.e., in an AMIP-like integration (Gates, 1992), such 

Figure 6 (left)
The number of districts with significant (1-tailed test) correlations. 
‘K’ refers to Kendall’s tau, ‘S’ to Spearman rank and ‘P’ to Pearson 

correlation. ‘90’ and ‘95’ respectively refer to the 90% and 95% levels of 
confidence. ‘CA SST’ refers to the AGCM forced with constructed analogue 

SST; ‘ECMWFsc’ refers to the AGCM forced with the ECMWF ensemble 
spread, and ‘ECMWFem’ to the AGCM forced with the ECMWF ensemble 

mean SST forecasts.

Figure 7 (below)
The top three panels show DJF rainfall index differences between 

cross-validated hindcasts and retro-active forecasts produced by first 
downscaling the three AGCM systems to rainfall districts. The bottom 

graphs are area-averaged values of cross-validation (red), retro-active 
(blue) and observed (grey) values for each of the AGCM systems. The 

number in the top left-hand corner in each of the bottom graphs is the 
Pearson (ordinary) correlation between the cross-validation and retro-

active area-averaged time series.
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runs have been shown to perform as well as a coupled model 
that uses the same AGCM when simulating South African 
seasonal rainfall totals (Landman et al., 2012). Thus, AGCMs 
may perform at least as well as fully coupled models over 
South Africa when skilful SST forecasts are used to force the 
AGCM. Since AGCMs do not require the same amount of 
computing resources as coupled models, higher resolution, 
larger ensembles and longer lead-time forecasts can be pro-
duced by an AGCM. Moreover, the generation of hindcasts 
(re-forecasts) to assess model performance and to calibrate 
model output are more easily achieved with an AGCM 
(Troccoli et al., 2008). Although coupled modelling on sea-
sonal time scales has recently been launched in South Africa 
(Beraki et al., 2014), the use of AGCMs in this country may 
thus continue for quite a few years to come. 

Modellers need to consider options on how to describe 
the lower boundary forcing, and in this case SST, in an effort 
to optimise AGCM-based systems for operational forecast 
production. In this paper three different strategies to predict 
the forcing SST were investigated and the results have shown 
that AGCMs skill is strongly influenced by the choice of SST 
prediction strategy. Although it has been suggested that the 
best practice may be to utilise different sources of SST predic-
tions which may be weighted according to region and season 
in a multi-model ensemble approach (Li et al., 2008), the 
results presented here are only for individual forecast systems 
and show that the best AGCM forecast for South African mid-
summer rainfall is from a single best SST forecast field (the 
ensemble mean is a more skilful representation than each of 
the individual members).

The verification results of the three downscaled 24-year 
probabilistic forecast sets show that none of the three SST 
forecast methodologies lead to AGCM skill levels over South 
Africa that are so low for a particular forecast system as to be 
completely discarded. In fact, ROC scores for all three cases 
are above 0.5 for both the usual 3-category terciles case as well 
as for seasonal extremes (15th and 85th percentile thresholds of 
the climatological rainfall record, respectively). Moreover, all 
three AGCM modelling strategies are associated with reliable 
above-normal forecasts. However, the best modelling strategy 
(improved discrimination as well as reliability) is found when 
using SST forecasts from a coupled model to force the AGCM, 
and in particular when using the ensemble mean SST fore-
casts as opposed to using the ensemble spread, i.e., the uncer-
tainties involved with the predicted SST fields. The intent 
of testing both ensemble members and ensemble mean SST 
from the coupled model was to evaluate the impact ensemble 
member SST (or SST uncertainty) had on forecast skill. In 
the study conducted here, we used the ensemble mean 850 
hPa geopotential heights from the different experiments as 
the predictor for a MOS-based forecast. Therefore, the model 
uncertainty (spread) due to the use of different SSTs for dif-
ferent ensemble members was averaged over. We attribute the 
higher skill for the MOS-forecasts using the ensemble mean 
SST to a larger signal-to-noise ratio for the ensemble mean 
SST case than for the ensemble member SST case.

Regarding the SST statistical forecast model, it should be 
noted that the lower rainfall forecast skill associated with the 
statistically predicted SSTs could be a result of the SST fore-
cast method used and choice of testing region (South Africa), 
and not because statistical SST forecasts are of poor quality. 
In fact, there have been a number of studies presented on suc-
cessful statistical prediction models for ENSO (e.g. Barnston 
and Ropelewski, 1992; Tangang et al., 1998) and for the larger 

part of the tropics and mid-latitude oceans (Landman and 
Mason, 2001). An appropriate selection of an SST prediction 
methodology has been shown to be important in order to 
ensure that seasonal rainfall predictions from AGCMs pro-
vide the best forecast guidance. Such a selection could include 
statistical model forecasts and coupled model forecasts, 
as well as combining these forecasts through multi-model 
ensemble methodologies.

Only verification results for the outer two categories were 
presented since there is usually little skill to be derived from 
predicting the near-normal category (Van den Dool and Toth, 
1991). The same has been found here, even with a near-normal 
category that comprises more than half of the climatological 
data. The notion of low predictability of the middle category is 
also supported by earlier verification work on South African 
seasonal rainfall predictions (Landman and Beraki, 2012; 
Landman et al., 2012). Owing to this low predictability of 
forecasts for ‘average rainfall conditions’ for a coming sea-
son to occur, forecast producers in South Africa may want to 
reconsider issuing such forecasts to forecast users. This notion 
of excluding forecasts for the near-normal category is already 
being practised by SAWS, who act as the official disseminator 
of seasonal forecasts in South Africa.

The results presented here may be case specific, and so this 
modelling study may need to be expanded to other rainfall 
seasons such as the austral autumn season, which is also asso-
ciated with useful forecast skill over South Africa (Landman 
et al., 2005), and for longer lead-times that will additionally 
add greater uncertainty in predicted SST anomalies. To this 
end, seasonal forecast modellers in South Africa have started 
to produce multi-decadal hindcast sets as well as real-time 
operational forecasts of global SSTs, based on a statistical 
model that uses antecedent SST as predictors (Landman and 
Mason, 2001), and on recalibrated CGCM forecasts by fol-
lowing the methodology presented by Tippet et al. (2005), but 
for the global oceans. These SST forecast sets are available 
on the same 1°x1° resolution as the Optimum Interpolation 
v2 data (Reynolds and Smith, 1994), and are available from 
the Council for Scientific and Industrial Research. The hind-
cast set can be used to develop a set of retro-active AGCM 
hindcasts and for operational AGCM forecast production. 
Optimising SST forecasts with sufficient lead-times is a very 
important endeavour in a country such as South Africa where 
computing infrastructure is sufficient to run AGCMs with 
fairly high resolution, and also to produce multi-ensemble 
forecasts operationally in real-time, but where it still remains 
challenging to run coupled ocean-atmosphere models opera-
tionally and in real-time with the same resolution and ensem-
ble size as the current AGCMs. Moreover, optimised AGCM 
configurations are important for the establishment of baseline 
skill levels against which current and future coupled models 
can be compared.
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