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Event-based estimates of the design flood in ungauged catchments are normally based on a single catchment 
response time parameter expressed as either the time of concentration (TC), lag time (TL) and/or time to peak 
(TP). In small, gauged catchments, a simplified convolution process between a single observed hyetograph and 
hydrograph is generally used to estimate these time parameters. In medium to large heterogeneous, gauged 
catchments, such a simplification is neither practical nor applicable, given that the variable antecedent soil 
moisture status resulting from previous rainfall events and spatially non-uniform rainfall hyetographs can 
result in multi-peaked hydrographs. In ungauged catchments, time parameters are estimated using either 
empirical or hydraulic methods. In South Africa (SA), unfortunately, the majority of the empirical methods 
recommended for general use were developed and verified in catchments ≤ 0.45 km² without using any 
local data. This paper presents the further development and verification of the streamflow-based approach 
developed by Gericke (2016) to estimate observed TP values and to derive a regional empirical TP equation in 
Primary Drainage Region X, SA. A semi-automated hydrograph analysis tool was developed to extract and 
analyse complete hydrographs for time parameter estimation using primary streamflow data from 51 flow-
gauging sites. The observed TP values were estimated using three methods: (i) duration of total net rise of 
a multi-peaked hydrograph, (ii) triangular-shaped direct runoff hydrograph approximations, and (iii) linear 
catchment response functions. The combined use of these methods incorporated the high variability of event-
based time parameters, and Method (iii), in conjunction with an ensemble-event approach sampled from the 
time parameter distributions, should replace the event-based approaches to enable the improved calibration 
of empirical time parameter equations. The conceptual approach used to derive the regional empirical TP 
equation should also be adopted when regional equations need to be derived at a national scale in SA.
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INTRODUCTION

Deterministic event-based design flood estimation (DFE) methods are commonly used by 
practitioners in ungauged catchments (Van Vuuren et al., 2012). In the application of these 
deterministic event-based DFE methods (e.g., rational, standard design flood, lag-routed hydrograph, 
etc.), it is widely assumed that the peak discharge from a catchment occurs when the duration of 
rainfall over a catchment equals the time of concentration (TC), i.e., when the entire catchment is 
contributing to runoff at the outlet. In applying other deterministic event-based DFE methods, 
e.g., synthetic unit hydrograph method, a trial-and-error approach is used to establish the storm 
duration which will result in the highest peak discharge. Thus, irrespective of whether the storm 
duration is TC-based or user-defined, the estimation of the catchment response time is necessary 
to select the critical duration of design rainfall to estimate the peak discharge using deterministic 
event-based DFE methods. Apart from TC, catchment response time could also be expressed using 
other time parameters, e.g., lag time (TL) and/or time to peak (TP). These time parameters are not 
only regarded as a fundamental input to deterministic event-based DFE methods, but any errors 
associated with these time parameter estimates will directly impact on peak discharge and volume 
estimates (McCuen, 2009; Gericke and Smithers, 2014).

In considering observed rainfall hyetographs and streamflow hydrographs in gauged catchments, time 
parameters (e.g., TC, TL and/or TP) can be defined by considering the time interval difference between 
two interrelated observed time variables, each obtained from a hyetograph (e.g., maximum rainfall 
intensity, centroid of effective rainfall, and/or the end time of a rainfall event) and/or a hydrograph 
(e.g., peak discharge, centroid of direct runoff, and/or the inflection point on the recession limb) 
(McCuen, 2009). In small, gauged catchments, a simplified convolution process is generally used to 
estimate time parameters. However, this simplification is neither practical nor applicable in medium to 
large heterogeneous, gauged catchments (Gericke and Smithers, 2014; 2017). Apart from the difficulty 
in applying a similar convolution process in larger catchments to establish the temporal relationship 
between a catchment hyetograph (derived from numerous rainfall stations) and the resulting outflow 
hydrograph, a uniform response to rainfall is assumed. Hence, the variable antecedent soil moisture 
status resulting from previous rainfall events and spatially non-uniform rainfall hyetographs, which 
can result in multi-peaked hydrographs, are ignored (Gericke and Smithers, 2017). The use of point 
rainfall data to estimate catchment hyetographs also has several associated problems, e.g., lack of data 
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at sub-daily timescales, poor synchronisation of time between 
different point rainfall and/or streamflow data sets, and the 
difficulties experienced when measuring time parameters directly 
from digitised autographic records (Schmidt and Schulze, 1984). 
The afore-mentioned limitations associated with point rainfall 
data are further aggravated by the decline of the South African 
rainfall monitoring network over recent years. The number of 
operational South African Weather Service (SAWS) rainfall 
stations has reduced from more than 2  000 in the 1970s to the 
current situation where the network is no better than it was as 
far back as 1920, with currently less than a 1 000 rainfall stations 
operational in a specific year (Pitman,  2011). Internationally, 
the number of operational rainfall stations is also declining 
(Lorenz  and Kunstmann, 2012). In contrast to rainfall data, 
streamflow data are generally less readily available internationally, 
but the quantity and quality thereof enable the direct estimation 
of catchment response times at medium to large catchment 
scales, while there are approximately 708 flow-gauging sites in 
South Africa (SA) having more than 20 years of records available 
(Smithers et al., 2014).

The analyses of hyetograph-hydrograph relationships to obtain 
time parameters are often performed manually, especially when 
rainfall-based time variables are required. As a result, such 
analyses are generally tedious, inconsistent, and subjective. Apart 
from the automated hyetograph-hydrograph analysis tool recently 
developed by Allnutt et al. (2020), most of the currently available 
hydrograph analysis tools (e.g., Arnold  et  al., 1995; Chapman, 
1999; Lim  et  al., 2005) do not include both rainfall hyetograph 
and streamflow hydrograph characteristics primarily aimed at the 
estimation of time parameters. In other words, these automated 
tools were not primarily developed to identify and define time 
variables for the subsequent estimation of time parameters, 
but they rather focus on the estimation of general hydrograph 
characteristics, direct runoff, baseflow separation, and recession 
analyses.

In ungauged catchments, catchment response time parameters 
are estimated using either empirical or hydraulic methods, 
although analytical or semi-analytical methods are also available 
(McCuen et al., 1984; McCuen, 2009). Empirical methods are the 
most frequently used and represent approximately 95% of all the 
methods developed internationally (Gericke and Smithers, 2014). 
However, the majority of these empirical methods are applicable 
to and calibrated for small catchment areas (A), except for 
A ≤ 1 280 km² (Thomas et al., 2000), A ≤ 5 000 km² (Pullen, 1969; 
Mimikou, 1984; Watt and Chow, 1985; Sabol, 2008), and 20 km²  
≤ A ≤ 35 000 km² (Gericke and Smithers, 2016).

In SA, unfortunately, none of the empirical TC estimation 
methods recommended for general use, e.g., Kerby (1959) and 
United States Bureau of Reclamation (USBR, 1973) equations, 
were developed and verified using local data, neither are they 
applicable to large catchments given that the calibration catchment 
areas were limited to 0.45  km² (McCuen  et  al.,  1984). Locally, 
the empirical TL  estimation methods are limited to the United 
States Department of Agriculture Soil  Conservation  Service 
(USDA SCS, 1985), SCS-SA (Schmidt and Schulze, 1984), and the 
Hydrological Research Unit (HRU; Pullen, 1969) equations. The 
SCS methodologies are limited to small catchments (A ≤ 30 km²), 
while the HRU methodology typically applies to A ≤ 5 000 km² 
(Gericke and Smithers, 2014). Consequently, practitioners 
commonly apply the TC and TL methods outside their bounds, 
both in terms of areal extent and their original developmental 
regions, without using any local correction factors. As a result, and 
in line with the research priorities identified by the National Flood 
Studies Programme (NFSP; Smithers et al., 2014), Gericke (2016) 
developed a new approach to estimate observed TP values using 

only observed streamflow data to calibrate and verify empirical TP 
equations in a pilot-scale study in four climatologically different 
regions of SA. Given that both Gericke and Smithers (2017) and 
Allnutt et al. (2020) confirmed that TC ≈ TL ≈ TP in medium to large 
catchments, the versatility of the streamflow-based TP equations 
to estimate TC and/or TL is acknowledged.

In considering the status quo in South African flood hydrology 
related to catchment response time parameters, the aim of this 
paper is to further develop and verify the streamflow-based 
approach of Gericke (2016) to estimate observed time to peak 
(TPx) values and to derive a regional empirical TPy equation in 
Primary  Drainage Region X, SA. The specific objectives are to: 
(i)  develop a semi-automated hydrograph analysis tool (HAT) 
to extract and analyse complete hydrographs for time parameter 
estimation and based on primary streamflow data from 51 flow-
gauging sites, (ii) estimate the observed TPx values using 3 methods, 
e.g., duration of total net rise of a multi-peaked hydrograph, 
triangular-shaped direct runoff hydrograph approximations, 
and linear catchment response functions, (iii)  derive a regional 
empirical TPy equation, and (iv) compare the performance of the 
derived TPy equation against existing TPy equation(s) to highlight 
the limitations of empirical equations when applied beyond the 
boundaries of their original developmental regions.

The scope of the study is limited to Primary Drainage Region X, 
given that the 51 flow-gauging stations generally have better and 
more complete data sets for which the Department of Water and 
Sanitation (DWS) has done some stage-discharge extensions. In 
addition, this paper reports the development of a semi-automated 
HAT, which will also serve as a future benchmark to inform and 
support the envisaged development, testing, and verification of a 
comprehensive (fully automated) hydrograph extraction utility. 
A summary of the study area is contained in the next section, 
followed by a description of the methodologies adopted and the 
results achieved. This is followed by the discussion and conclusions.

STUDY AREA

South Africa, which is located on the southernmost tip of Africa, is 
demarcated into 22 primary drainage regions, i.e., A to X (Midgley 
et al., 1994), which are further delineated into 148  secondary 
drainage regions, i.e., A1, A2, to X4. As shown in Fig. 1, Primary 
Drainage Region X covers 31  193  km²; 70% extends across the 
Mpumalanga Province of SA, while the remainder extends into 
Eswatini (former Swaziland).

Primary Drainage Region X is further delineated into 4 secondary 
drainage regions, i.e., X1  (11  227  km²), X2 (10  447  km²), X3 
(6  322  km²), and X4 (3  197  km²). The  51  gauged catchments 
under consideration have catchment areas ranging from 6  km² 
to 21  583  km². The catchment topography is moderately steep 
with elevations varying from 112 m to 2 255 m above mean sea 
level and with average catchment slopes between 3.5% and 36.1% 
(USGS, 2016). The mean annual precipitation (MAP) ranges from 
521 mm to 1 325 mm (Lynch, 2004) and the summer rainfall is 
regarded as highly variable. The flow-gauging stations in each 
catchment are classified by DWS as either primary (P), secondary 
(S), or tertiary (T) gauging sites based on the: (i) status (open/
closed), (ii) location and importance in the overall monitoring 
network, (iii)  data availability, quality, and record length, (iv) 
type of calibration (standard/extended for above-structure-limit 
conditions), (v)  site survey information available (yes/no), and 
(vi) flood frequency analyses conducted (yes/no).

METHODOLOGY AND RESULTS

This section contains the methodology adopted to achieve all the 
specific objectives and the associated results.
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Development of a semi-automated hydrograph analysis 
tool

The HAT was developed in the Microsoft Excel and/or Visual 
Basic for Applications (VBA) environment and includes semi-
automated routines to enable the identification, extraction, 
and analyses of complete hydrographs for the purpose of time 
parameter estimation, as detailed in the subsequent sections. The 
approximation of TC ≈ TP as proposed by Gericke (2016) forms the 
basis of the HAT and is based on the definition that the volume 
of effective rainfall equals the volume of direct runoff when a 
hydrograph is separated into direct runoff and baseflow. As shown 
in Fig. 2, the separation point on the hydrograph is regarded as 
the start of direct runoff (QDxi), which coincides with the onset of 
effective rainfall (PExi). Hence, the extensive convolution process 
normally required to estimate time parameters is eliminated, 
given that the time parameters are estimated directly from the 
observed streamflow data without the need for rainfall data.

Typically, a complete hydrograph extracted using the HAT will 
include: (i)  start/end date/time of flow event, (ii) observed water 
level (m), (iii) observed discharge (m3·s-1) and total volume of runoff 
(QTxi, m3), (iv) direct runoff discharge (m3·s-1) and total volume of 
direct runoff (QDxi, m3), (v)  baseflow discharge (m3·s-1) and total 
volume of baseflow (QBxi, m3), and (vi) the cumulative volume of 
direct runoff under the hydrograph rising limb (QDRi, m3).

Extraction and analysis of flood hydrographs to estimate 
time parameters

The procedural steps followed in Region X, with the aid of func-
tionalities available in the HAT, include the (Gericke et al., 2023):

(a)	 Evaluation, preparation, and extraction of primary 
streamflow data for the period up to 2020/21 from the DWS 
streamflow database.

(b)	 Identification and extraction of the annual maximum series 
(AMS) events, i.e., the annual flood peaks at each flow-
gauging station within a hydrological year. For example, 
a continuous record length of 50  years contains 50 AMS  
events.

(c)	 Assessment of the accuracy and relevance of the discharge 
rating tables (DTs) on the DWS website. In general, all the 
DTs in the study area were already quality controlled and 
extended (as required) by DWS (Flood Studies). However, in 
the absence of an extended DT (if required), the AMS data 
set was extended using a 3rd order polynomial relationship 
up to 20%. As recommended by Gericke and Smithers (2017), 
the verification of the extension to +20% considered both the 
hydrograph shape, especially the peakedness as a result of a 
steep rising limb in relation to the hydrograph base length, 
and the relationship between individual peak discharge (QPxi) 
and direct runoff volume (QDxi) pair values. Typically, in such 
an event, the additional volume of direct runoff (QDE) due to 
the extrapolation is limited to 5%, i.e., QDE ≤ 0.05 QDxi.

(d)	 Implementation of user-defined truncation level criteria 
(QTR) associated with the record length (N) to extract 
complete hydrographs. The following truncation level 
criteria were implemented to ensure that the frequently 
occurring and lower AMS values, which could potentially 
result in underestimated time parameters, are excluded: 
(i)  N  ≤  20  years, use the lowest/minimum AMS value, 
(ii) 20 < N ≤ 60 years, use the 25th-percentile AMS value, and 
(iii) N > 60 years, use the median AMS value. For example, 
the median AMS value typically has a return period (T) = 
2-year or an annual exceedance probability (AEP) = 50%. 
Hence, all complete hydrographs with a peak discharge > 
selected AMS value, i.e., partial duration series (PDS) values 
above a certain discharge threshold, were extracted.

Figure 1. Location of the 51 gauged catchments in Primary Drainage Region X
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(e)	 Identification and extraction of complete hydrographs 
(cf. Fig. 2) associated with each AMS event and applicable 
truncation level criteria. A total of 4  454 complete 
hydrographs were extracted and analysed. The record lengths 
under consideration varied between 13 and 112 years, with 
an overall average record length of 49 years. The QTR criteria 
were dominated by the minimum AMS (5 catchments) and 
25-percentile AMS (29 catchments) values in 67% of all the 
catchments under consideration. Therefore, at least 75% of all 
the AMS events were included in the analyses at a catchment 
level, while it could be argued that 50% or more of the AMS 
events were discarded in the 17 catchments (33%) remaining 
where the median AMS criteria were applied. Given that 
record length is used as the guide for the QTR  criteria, the 
process followed is regarded as consistent, both in terms of 
the process itself and the results obtained. Subsequently, it 
is evident that not all the AMS values need to be included in 
time parameter analyses. As a result, only 2 284 hydrographs 
were considered in the final analyses.

(f)	 Separation of complete hydrographs (cf. Fig. 2) into direct 
runoff and baseflow. The recursive digital filtering method 
(Eq. 1) as initially proposed by Lyne and Hollick (1979), 
further developed by Nathan and McMahon (1990), and 
implemented by Smakhtin and Watkins (1997) in a national 
scale study in SA, was used to separate the direct runoff 
and baseflow. Equation 1 is also the preferred baseflow 
separation method used by DWS and included as the default 
digital filter algorithm in the Hydrological Timeseries 
Data Management System (Hydstra) which is used to 
manage and maintain the whole DWS meteorological and 
hydrological database. Given that daily/sub-daily time-step 
data are more appropriate to time parameter estimation 
and the need for consistency and reproducibility, Eq.  1 
with default α-parameter values ranging between 0.995 
and 0.997 (Smakhtin and Watkins, 1997), and a fixed 
β-parameter value of 0.5 (Hughes et al., 2003), was used in 
all the catchments under consideration.

Q Q Q Qxi xi i xi xi iD D T T� � � �� �� � �( ) ( )( )( )1 11            (1)

where: QDxi is the filtered direct runoff (m3 ·s-1) at time step 
i, which is subject to QDx ≥ 0 for time i, α, β are the filter 
parameters, and QTxi is the total streamflow (m3·s-1; direct 
runoff plus baseflow) at time i.

(g)	 Estimation of the time parameter values associated with 
individual hydrograph/flood events using two different 
approaches: (i) net rise (duration) of a multi-peaked 
hydrograph (Eq. 2), and (ii) triangular-shaped direct runoff 
hydrograph approximation (Eq. 3) and associated variable 
hydrograph shape parameters (Eqs 3a–c) as shown in Fig. 3.
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where: TBxi is the triangular hydrograph base length (h) for 
individual hydrograph/flood events, tj is the duration of the 
total net rise (excluding the in-between recession limbs) 
of a multiple-peaked hydrograph (h), TPxi is the net rise 
(duration) or triangular approximated time to peak (h) for 
individual hydrographs/flood events, TRcxi is the recession 
time (h) for individual flood events, QDxi is the volume 
of direct runoff (m3) for individual hydrographs, QDRi is 
the volume of direct runoff (m3) under the rising limb for 
individual hydrographs, QPxi is the observed peak discharge 
(m3·s-1) for individual hydrographs, K is the hydrograph 
shape parameter, N is the sample size, and x is a variable 
time parameter proportionality ratio, with x = 1, either TPxi 
or TPx and/or TCxi or TCx could be estimated, while TLxi or TLx 
could be estimated by assuming that TL = 0.6TC, which is the 
time from the centroid of effective rainfall to the time of peak 
discharge.

Figure 2. Time parameter relationships in the HAT (after Gericke and Smithers, 2017)
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Equation 2 was adopted from Du Plessis (1984). Given that 
the complete hydrographs extracted are based on the user-
defined truncation level criteria, hydrographs containing 
multiple peaks as shown in Fig. 2 could be possible. Hence, in 
applying Eq. 2, hydrographs are regarded as separate events 
when the start of a successive rising limb is characterised by 
the total discharge ≈ baseflow discharge. If the total discharge 
> baseflow discharge, then the net rise calculation continues 
from the trough after the previous peak. Therefore, Eq. 2 is 
regarded as the best estimate of the observed TPxi values as 
extracted directly from the observed hydrographs.

A scatter plot of the TPxi values computed using Eqs 2 and 
3 for all the catchments under consideration is shown in 

Fig.  4. In comparing Eqs  2 and 3 at a catchment level, the 
r² value of 0.84 (based on the 2 284 flood hydrographs) not 
only confirms the relatively high degree of association, but 
also the usefulness of Eq.  3. Taking into consideration the 
influence that catchment area has on response times, the 
degree of association between these individual TPxi  values 
could decrease with an increase in catchment area. In the 
case of deterministic event-based DFE, the ultimate goal is 
to estimate the average catchment  TPx by considering the 
sample-mean of the individual responses based on Eqs 2 
and 3, respectively. However, these individual responses can 
also be used to fit distributions for future ensemble-event 
approaches (Nathan and Ling, 2016).

Figure 3. Triangular-shaped direct runoff hydrograph approximation (Eq. 3) in HAT (after Gericke and Smithers, 2017)

Figure 4. Scatter plot of the TPxi pair values computed using Eqs 2 and 3
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In Fig. 5, a frequency distribution histogram of the QDRi values 
expressed as a percentage of the total direct runoff volume 
(QDxi) is shown. Taking into consideration that 2 284 (51.3%) 
of the individual flood hydrographs extracted were included 
in the final analyses, a few flood events could be characterised 
by either low (0.4%) or high (92.8%) QDRi  values. However, 
approximately 35% of the QDRi values are within the 20 ~ 40% 
range. Only 15% of the QDRi values are within the 30 ~ 40 % range; 
highlighting some relevance of the conceptual curvilinear unit 
hydrograph theory (USDA NRCS, 2010) which assigns 37.5% 
of the direct runoff volume to the hydrograph rising limb.

Thus, by using the above approach, as detailed in Step (g), 
both multi-peaked hydrographs (Eq. 2) and triangular-
shaped direct runoff hydrograph approximations (Eq. 3) 
are included. Ultimately, Eq. 3, which reflects the actual 
percentage of direct runoff under the rising limb of each 
individual hydrograph, can also be used in future to expand 
the unit hydrograph theory to larger catchments. In other 
words, the variable hydrograph shape parameter (Eq.  3a), 
which reflects the actual percentage of direct runoff under 
the rising limb of each individual hydrograph, can be used 
instead of the fixed volume of 37.5% normally associated 
with the conceptual curvilinear unit hydrograph theory.

(h)	 Estimation of the ‘average’ catchment response time (TPx) 
of all the flood events considered in each catchment by 
using a linear catchment response function (Eq.  4), i.e., 
the relationship between individual paired observed peak 
discharge (QPxi) and direct runoff volume (QDxi) values.
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where: TPx is the ‘average’ catchment time to peak (h) based 
on a linear catchment response function, QDxi is the volume 
of direct runoff (m3) for individual hydrographs, Q xD  is the 
mean of QDxi (m3), QPxi is the observed peak discharge (m·s-1) 
for individual hydrographs, Q xP  is the mean of QPxi (m3·s-1),  
N is the sample size, and x is a variable time parameter 
proportionality ratio as defined before.

A scatter plot of the average TPxi values computed using both Eqs 2 
and 3 in comparison to the catchment TPx values (Eq. 4) for all the 
catchments under consideration is shown in Fig. 6.

In Fig. 6, a high degree of association is evident, i.e., r2 = 0.986 
(Eqs 2 vs. 4) and r2 = 0.999 (Eqs 3 vs. 4). At a catchment level, 
the averages of Eqs 2 and/or 3 were also comparable to those 
estimates based on Eq. 4, with average relative differences limited 
to 13.6% and r²  values ranging from 0.97 to 0.99. Hence, the 
catchment response times based on an assumed linear catchment 
response function (Eq. 4) provide results comparable to the 
sample-mean of all the individual response times as estimated 
using Eqs 2 and/or 3. The combined use of Eqs 2 and 3 not only 
incorporates the high variability of event-based time parameters, 
but the catchment TPx values (Eq. 4) are also well within the range 
of other uncertainties inherent to all DFE procedures. Given that 
Eq. 4 provides a single, average catchment TPx value as required 
for deterministic event-based DFE, the use thereof in design 
hydrology and for the calibration of empirical time parameter 
equations, is recommended.

Calibration, verification, and comparison of regional 
empirical time parameter equations

Stepwise multiple regression analyses were performed on the 
TPx values (Eq. 4) and geomorphological catchment characteristics 
(e.g., area A, perimeter P, centroid distance LC, hydraulic length 
LH, average catchment slope S, average main watercourse slope 
SCH, drainage density DD, and MAP) as included in Table  A1 
(Appendix) to establish the calibrated TPy  relationship (Eq. 5). 
Both untransformed and log-transformed data sets applicable 
to the above predictor variables were considered. In some of the 
41 calibration catchments, the transformed predictor variables 
performed less satisfactorily when included as part of the multiple 
regression analyses, while the log-transformations resulted in 
negative response times. Subsequently, backward stepwise multiple 
linear regression analyses with deletion using untransformed data 
resulted in the best calibrated TPy  regression and the following 
independent and statistically significant predictor variables were 

Figure 5. Frequency distribution histogram of QDRi values obtained from 2 284 hydrographs
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retained in Eq. 5 at a 95% confidence level: A and S. Equation 5 
was also independently verified in 10 catchments not used during 
the calibration process.

                      T A SyP  = 0.003417  + 0.464633                           (5)

where: TPy is the estimated time to peak (h), A is the catchment 
area (km²), and S is the average catchment slope (%).

The goodness-of-fit (GOF) statistics and correlation matrix 
applicable to the predictor variables are summarised in Table 1.  
Typically, the coefficient of multiple-correlation (Ri²) and the 
standard error of the estimate (SEy) serve as measures of accuracy, 
while the partial t-tests highlight the statistical significance of the 
individual predictor variables, and the total F-tests represent the 
degree of correlation between the TPx  values and the predictor 
variables. In the correlation matrix, the degree of association 
between the predictor variables is defined using both the 
coefficient of determination (r²) and the variance inflation factor 
(VIF). Standardised residuals were also considered to identify 
possible outliers.

At a 95% confidence level and degrees of freedom = 39, the critical 
t-statistic (tα) = 2.02. In comparing the t-statistic values of each 
predictor variable in Table 1 with tα, it is evident that all t-statistic 

values > tα; hence, confirming the statistical significance of these 
predictor variables and supporting their inclusion in Eq. 5. The 
latter results are further supported by all P-values being less than 
the significance level of 0.05.

It is evident from the correlation matrix that a low correlation 
exists between the statistically significant predictor variables, with 
r² = 0.16, and this is further supported by the VIF = 1.19. Typically, 
the lowest VIF value that can be achieved equals one (1), while the 
range 1 < VIF ≤ 3 is associated with an acceptable to moderate 
correlation between predictor variables (Mediero  and Kjeldsen, 
2014). Hence, no collinearity exists between A and S, and they 
are both regarded as independent and statistically significant 
predictor variables. The inclusion of a slope predictor (S) is also 
regarded as essential to ensure that the size (A) predictor provides 
realistic catchment response times.

Lastly, the SEy results (≈ 5.2 hours) in Table 1 must also be clearly 
understood in the context of the actual travel time associated with 
the catchment sizes in the study area, as the impact of such an 
error in the TPy estimates might be critical in smaller catchments, 
it would be regarded as less significant in a larger catchment. The 
rejection of the null hypothesis (F > Fα) in Table 1 also confirmed 
the significant relationship between TPx and the statistically 
significant predictor variables as included in Eq. 5.

Figure 6. Scatter plot of average TPx (Eqs 2 and 3) and catchment TPx (Eq. 4) values

Table 1. Summary of GOF statistics, hypothesis testing, and correlation matrix results at a 95% confidence level in the 41 calibration catchments

Criterion Value Variable/
criterion

A S VIF Correlation matrix

Variable A S

Ri
2 0.97 Coefficients 0.003417 0.464633 1.19 A 1.00 0.16

r2 0.95 Coefficient SE 0.000174 0.05734 S 0.16 1.00

SEy (h) 5.24 T-statistic 19.63 8.10

Probability of F-statistic 4.96 x 10−25 P-value 8.1 x 10−22 6.9 x 10−10

F-observed value (F-statistic) 342.34 Lower 95% 0.003065 0.348652

Critical F-statistic (Fα) 2.63 Upper 95% 0.003770 0.580614
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In  considering the standardised residuals computed in both 
the calibration and verification catchments, it was evident that 
± 92% of the total sample have standardised residuals less than 
± 2 (ranging between −1.68 and 1.56), except in the case of the 
calibration catchment, Catchment X2H005 (−2.22), and the 
verification catchments, Catchments X2H025 (2.04), X2H026 
(2.20) and X2H028 (2.39), respectively. However, the three 
verification catchments have areas ranging from 6  to 25  km²; 
hence, these catchments are regarded as ‘small catchments’ and 
not necessarily ‘medium to large catchments’, which this study 
focuses on. According to Chatterjee and Simonoff (2013), it is 
expected of a reliable regression model to have approximately 
95% of the standardised residuals between −2 and +2, while 
standardised residuals ≥ ± 2 should be investigated as potential 
outliers. The standardised residuals  ≥  ±  2 in the four identified 
catchments are regarded as ‘acceptable’, given that TPy is consistent 
with the regression relationship implied by the other TPx values as 
included in Fig. 7.

The high degree of association, as depicted in Fig.  7, not only 
confirmed the good correlation between TPx and TPy, but also 
the usefulness of Eq. 5 to estimate the catchment response time 
in both the calibration and verification catchments. The overall 
r 2 value equals 0.95.

Given the high TPxi variability observed at a catchment level, the 
lower TPxi values (Eqs  2 and/or 3), which could be associated 
with rainfall events not covering the whole catchment and 
centred near the catchment outlet, occur more frequently, and 
thereby the average value, i.e., the catchment TPx (Eq. 4), could be 
underestimated. On the other hand, the longer TPxi values have a 
lower frequency of occurrence and are assumed to be reasonable 
at medium to large catchment scales as the contribution of the 
whole catchment to peak discharge seldom occurs as a result of 
the non-uniform spatial and temporal distribution of rainfall in 
a catchment. Furthermore, in some catchments (e.g.,  X2H010, 
13–15, 26, 27, and X2H028), the correlation between the QPxi−QDxi 
pair values used to derive Eq. 4 is low (r² ≈ 0.1), despite the high 

agreement (differences ≤ 15%) between Eq. 4 and the averages of 
Eqs 2 and/or 3 in these catchments. Therefore, it could be argued 
that the TPx values (Eq.  4) in the above cases might contribute 
to less appropriate TPy estimates (Eq. 5) and need to be further 
investigated or improved by using an ensemble-event approach 
sampled from the TPxi distributions.

It is thus evident from the above paragraph that the non-uniform 
spatial and temporal distribution of rainfall implies that the 
whole catchment area (A) will seldom contribute to the resulting 
peak discharge at the catchment outlet. However, A is included 
in Eq. 5 without being able to consider the spatial and temporal 
variability. Subsequently, this serves as a further motivation that 
an ensemble-event approach should be deployed in future to 
address the uncertainty associated with individual catchment 
response times and to provide a probabilistic range of acceptable 
catchment response times at a catchment/regional level which can 
ultimately be used to improve the calibration of empirical time 
parameter equations.

Hence, the high variability of individual-event observed TPxi (Eqs 
2 and 3) and estimated TPy (Eq. 5) values relative to the catchment 
TPx  (Eq. 4) values in each catchment was further investigated 
using Eq. 6. The relative catchment response time variability or 
error at a catchment level are shown in Fig. 8.

T T T
T
xi y

xPVar
P P

P
� �
�

�
� �

, 1                                   (6)

where: TPVar is the relative catchment response time variability/
error [over/underestimation (±)], TPx is the observed catchment 
response time (Eq. 4, h), TPxi is the maximum/minimum 
individual-event catchment response time (Eqs 2 and/or 3, h), 
and TPy is the estimated catchment response time (Eq. 5, h).

The high TPxi variability as depicted in Fig. 8 is not only associated 
with an increase in catchment area, given that the variability 
ranges implied by Eq. 6 do not constantly increase with an 
increasing catchment area. Thus, it could be argued that such 

Figure 7. Scatter plot of estimated TPy (Eq. 5) and catchment TPx (Eq. 4) values
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higher variabilities could also be associated with an increase in 
the spatial and temporal distribution and heterogeneity of other 
geomorphological catchment characteristics and rainfall as the 
catchment scale increases. Furthermore, the validity of the GOF 
results listed in Table 1 is also confirmed by and evident from 
Fig. 8, since the TPy estimates are well within the bounds of the 
maximum/minimum individual-event observed TPxi variability in 
each catchment, except in the verification catchments smaller than 
25 km² where the TPy estimates are associated with standardised 
residuals > ± 2.

In order to compare the performance of the derived TPy equation 
(Eq. 5) against existing equation(s), the empirical TPy equation 
(Eq. 7) as originally developed by Gericke (2016) was also 
tested in the 51 catchments. As a result, a scatter plot of the TPy 
(Eq. 7) and catchment TPx (Eq. 4) values for both the calibration 
and verification catchments is shown in Fig.  9 to highlight the 
limitations when empirical equations are applied beyond their 
developmental regions.

T x x x x xMAP A L L S
Py

C H= 1 2 3 4 5                                  (7)

where: TPy is the estimated time to peak (h), A is the catchment 
area (km²), LC is the centroid distance (km), LH is the hydraulic 
length (km), MAP is the mean annual precipitation (mm), S  is 
the average catchment slope (%), and x1 to x5 are calibration 
coefficients (Gericke, 2016).

The low to moderate degree of association (r2 ≤ 0.68), as depicted 
in Fig. 9, highlighted that Eq. 7 in its current format would not 
be useful to estimate the catchment response time in most of the 
catchments under consideration, and thereby confirms that any 
empirical equation should be used with caution when applied 
beyond the boundaries of its original developmental regions. 
In addition, many of the standardised residuals exceeded the 
benchmark standardised residual value of ±  2. Typically, none 

of the 51 catchments considered in this study formed part of the 
catchments used to calibrate and verify Eq. 7. Subsequently, Eq. 5 
is the preferred empirical equation to estimate TPy in Primary 
Drainage Region X.

DISCUSSION AND CONCLUSIONS

The aim of this study was to further develop and verify the 
streamflow-based approach of Gericke (2016) in Primary Drainage 
Region X, SA. By achieving the research aim, observed TPx values 
were estimated in a practical and objective manner without the 
need for rainfall data to ultimately derive a regional empirical TPy 
equation. The development of the HAT enabled the consistent 
extraction and analyses of complete hydrographs for the purpose 
of time parameter estimation using Eqs 2, 3, and/or 4. Given the 
high variability and complexities involved when time parameters 
are estimated, along with the technical problems encountered 
with observed streamflow data, e.g., exceedance of DTs, multi-
peaked hydrographs, etc., a fully-automated version of the HAT is 
preferred and would typically be required to deploy the proposed 
methodology at a national scale. Given that the whole DWS 
meteorological and hydrological database is managed, populated, 
maintained, and archived using Hydstra, it is recommended that 
the fully-automated HAT should be based on the current Hydstra 
tools available. This will not only ensure that the current Hydstra 
functionalities are optimally utilised, but will also enhance the 
possibilities of having the HAT built into a web-based version of 
Hydstra to enable practitioners to run the hydrograph extraction 
and analyses themselves. As part of the fully-automated HAT to be 
developed, with specific reference to design hydrology and for the 
calibration of empirical time parameter equations, the catchment 
TPx (Eq. 4) and an ensemble-event approach sampled from the TPxi 
distributions should be applied in future to replace the current 
event-based approaches to enable the improved calibration of 
empirical time parameter equations.

Figure 8. Relative catchment response time variability (Eq. 6) at a catchment level
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The conceptual approach used to derive the regional empirical TPy 
equation (Eq. 5) should also be adopted when regional empirical 
time parameter equations need to be derived at a national scale 
in SA. However, the application of Eq. 5 should be limited to 
Primary Drainage Region X, given the known limitations when 
empirical equations are applied beyond their developmental 
boundaries. Thus, when attempting to derive any new regional 
empirical time parameter equation(s) in SA, caution should be 
practiced by including, as far as possible, only predictor variables 
which are statistically significant, independent, easy to derive, 
and commonly available and used in practice. Hence, a balance 
needs to be achieved between the statistical correctness and user-
friendliness of such empirical time parameter equations.

Very often in hydrology, as in this case study, predictor variables 
might be statistically significant but, due to a high degree of 
multi-collinearity, the regression coefficient estimates and 
P-values in the regression model are likely to be unreliable. For 
example, it is well known in flood hydrology that A, LC, and LH 
in combination are useful to describe differences in catchment 
shape, which subsequently has an impact on the catchment 
response time. However, these predictor variables are very often 
associated with a high degree of multi-collinearity, especially LC 
and LH. The inclusion of both LC and LH, subjected to alternative 
statistical transformations to result in orthogonal variables, should 
therefore be considered, especially in catchments characterised 
by heterogeneous upper and lower catchment slope distributions 
where large differences between S and SCH exist. Typically, the 
inclusion of LC ensures that the runoff volumes which reach and 
concentrate at the catchment centroid much quicker (due to a 
steeper catchment slope in the upper reaches), in conjunction with 
the shorter LC distances to follow to the catchment outlet, result 
in the required shorter response times. The opposite is also true; 
hence, the response of a catchment is most likely to be influenced 
by a combination of geomorphological catchment characteristics 
and not by a single catchment characteristic, irrespective of 
whether such characteristics are statistically independent or not. 
Furthermore, the combined use of A, LC, and LH is also evident 
from hydrological literature applicable to the derivation of time 

parameter equations, e.g., TC equations (Sabol, 2008), TL equations 
(Snyder,  1938; Taylor and Schwarz, 1952; Pullen, 1969), and 
TP equations (Gericke and Smithers, 2016). It is acknowledged that 
some of these equations were developed many years ago, but they 
are still widely used in practice with great success.

In the interim, and in the absence of a fully-automated HAT, it 
is also recommended that the current methodology be gradually 
expanded to Primary Drainage Regions A and B, before deploying 
it at a national scale. Approximately 110 gauged catchments 
covering the whole of the Gauteng, Mpumalanga, and Limpopo 
Provinces are situated in these regions. Typically, these three 
regions do not only form a continuous geographical region, but 
the largest percentage of SA’s population also resides here and is 
frequently subjected to extreme flooding.
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Table A1. Potential predictor variables (catchment characteristics) to estimate TPx

Station/
catchment

TPx (h)
Eq. 4

TPy (h)
Eq. 5

Standard predictor variables

A (km²) P (km) LC (km) LH (km) S (%) SCH (%) DD (km·km−2) MAP (mm)

Ca
lib

ra
ti

on

X1H001 (P) 20.0 24.7 5 504 608.2 137.7 251.7 12.730 0.416 1.5 790

X1H003 (P) 33.2 36.7 8 776 1 040.3 229.0 435.0 14.420 0.391 0.8 809

X1H014 (S) 13.6 15.1 1 122 281.3 49.9 104.7 24.310 0.960 1.0 969

X1H016 (S) 7.5 9.1 585 193.4 30.4 59.1 15.300 1.191 1.9 813

X1H017 (S) 11.1 11.1 2 416 355.3 48.3 112.1 6.040 0.224 2.2 703

X1H018 (S) 16.0 12.3 2 628 400.9 67.6 135.8 7.070 0.306 2.1 709

X1H019 (S) 3.6 11.2 186 112.1 15.9 37.3 22.780 1.905 1.8 895

X1H020 (S) 3.1 9.1 48 46.0 7.0 12.9 19.280 3.461 1.8 923

X1H021 (S) 11.4 10.0 292 115.7 22.0 51.9 19.450 1.419 1.4 892

X1H052 (P) 15.0 10.1 1 457 356.2 81.0 154.8 11.030 0.575 0.8 929

X1H053 (P) 39.2 41.7 11 121 1 026.7 253.4 495.3 7.950 0.361 0.7 809

X2H005 (P) 17.8 4.2 640 178.4 31.9 64.0 4.340 1.107 1.6 998

X2H006 (S) 26.4 22.2 5 090 585.2 57.5 122.8 10.290 0.391 1.5 834

X2H008 (S) 4.7 11.2 180 93.7 19.2 33.4 22.680 2.290 1.6 947

X2H010 (S) 9.5 9.1 127 70.4 11.2 24.0 18.630 2.661 1.7 1 017

X2H012 (S) 2.7 2.4 93 68.0 7.4 17.2 4.390 1.132 2.3 782

X2H013 (P) 11.5 13.9 1 513 329.9 61.9 122.4 18.680 1.132 1.9 747

X2H014 (S) 20.2 13.8 255 116.7 20.6 40.0 27.870 1.707 1.9 944

X2H015 (P) 13.1 10.4 1 545 335.6 46.6 110.4 10.990 0.941 1.9 827

X2H016 (P) 48.2 43.0 10 354 927.6 164.7 320.3 16.490 0.495 0.8 762

X2H022 (P) 10.9 15.9 1 642 319.6 61.4 112.3 22.120 0.996 1.3 816

X2H024 (S) 6.2 10.3 82 64.1 10.1 22.7 21.650 3.543 1.7 1 021

X2H031 (S) 8.1 7.7 264 121.4 17.8 42.8 14.600 1.979 1.5 922

X2H032 (P) 29.9 27.2 5 382 635.7 84.4 195.2 19.000 0.698 1.4 828

X2H035 (S) 9.9 10.8 16 23.1 1.9 5.7 23.170 4.442 1.8 1 225

X2H036 (P) 83.3 77.8 21 583 1 124.5 265.7 567.8 8.800 0.352 0.7 789

X2H046 (S) 27.0 33.8 8 458 797.1 34.3 73.3 10.550 0.395 1.1 788

X2H047 (S) 7.7 6.9 111 82.7 10.8 28.3 14.110 2.508 2.1 747

X2H059 (S) 11.3 4.4 308 166.7 31.3 54.9 7.200 0.815 1.5 876

X2H072 (S) 6.6 4.9 247 122.8 12.8 35.6 8.630 0.679 1.4 723

X2H096 (S) 15.8 15.5 3 089 444.9 52.1 118.5 10.660 0.907 1.8 788

X2H097 (P) 23.1 32.6 8 164 750.4 51.0 109.0 10.170 0.504 1.1 802

X3H001 (P) 20.0 14.8 174 82.8 10.3 22.2 30.650 2.944 1.9 1 232

X3H002 (S) 6.5 9.6 55 43.9 5.0 14.1 20.180 2.870 1.9 1 221

X3H003 (S) 13.4 4.2 48 49.8 6.9 17.2 8.640 1.587 1.9 1 325

X3H004 (S) 7.6 5.1 215 135.2 15.6 41.2 9.490 2.164 1.6 963

X3H008 (P) 7.9 6.2 1 071 225.1 33.1 77.4 5.560 0.550 1.6 887

X3H015 (P) 17.2 22.4 5 788 639.8 56.5 120.7 5.590 0.203 1.0 800

X3H021 (P) 18.1 12.2 2 420 396.8 62.4 125.6 8.470 0.753 1.4 980

X3H023 (S) 18.8 8.6 679 199.1 26.7 58.3 13.410 1.296 1.7 1 245

X4H004 (P) 5.0 5.0 992 222.5 31.0 52.8 3.480 0.298 1.4 521

Ve
ri

fic
at

io
n

X1H012 (T) 10.9 14.7 118 87.4 14.5 31.1 30.820 1.929 1.1 1 028

X2H011 (T) 2.9 5.3 400 141.3 13.4 37.7 8.530 1.044 2.2 778

X2H017 (T) 48.2 38.6 8 794 794.0 118.1 257.0 18.470 0.623 1.0 794

X2H018 (T) 5.9 4.7 620 174.3 34.6 64.2 5.500 0.388 1.1 597

X2H025 (T) 4.4 16.6 25 35.4 4.0 11.0 35.640 10.423 2.0 927

X2H026 (T) 1.8 15.1 14 22.2 3.6 7.9 32.400 10.332 2.0 987

X2H027 (T) 19.1 14.6 77 58.6 10.3 20.5 30.910 3.472 2.0 1 025

X2H028 (T) 2.3 16.8 6 14.3 2.1 4.6 36.130 12.984 2.0 868

X3H006 (T) 15.6 13.2 771 225.1 35.4 70.1 22.810 1.153 1.7 1 218

X3H011 (T) 17.2 10.2 214 109.7 14.7 33.5 20.340 1.221 1.8 1 239
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