Modelling daily net radiation of open water surfaces using land-based meteorological data

L Myeni1,2, MJ Savage3 and AD Clulow4

1Agrometeorology, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
2Agricultural Research Council – Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa

INTRODUCTION

The high temporal and spatial variability of rainfall in semi-arid regions such as South Africa results in water resources being not uniformly distributed throughout the region (Mukheibir and Sparks, 2003). To ensure water security at various times of the year, water is stored in reservoirs (McJannet et al., 2013; Spears et al., 2016). However, significant amounts of water may be lost from open water storages to the atmosphere as water vapour, and this phenomenon is referred to as open water evaporation (Schulze, 2011; McJannet et al., 2008). Within this context, accurate quantification of open water evaporation is of paramount importance for efficient management of water resources, as water scarcity posed by climate change advances in the semi-arid of South Africa (Everson, 1999; Savage et al., 2004; Mengistu and Savage, 2010; Schulze, 2011; Savage et al., 2017).

Energy balance models are the most accurate methods for estimating open water evaporation, after the direct measurements, and are often used as a reference method against which other methods are compared (Finch, 2001). The energy balance techniques for estimating open water evaporation require either measurements or estimates of net irradiance of open water ($R_{n\,\text{water}}$) (McJannet et al., 2008; Zheng, 2014). Measurements of $R_{n\,\text{water}}$ are monitored by net radiometers mounted above water storage.

Net radiometers are expensive, requiring regular calibration and maintenance to attain accurate measurements (Dong et al., 1992; Kjaergaard et al., 2007; Savage and Hellman, 2009; Carmona et al., 2017; Myeni et al., 2020). Consequently, $R_{n\,\text{water}}$ measurements are often not readily available for the water storage of interest, especially in developing countries (McJannet et al., 2013; Zheng, 2014). Alternatively, the lack of $R_{n\,\text{water}}$ data above water bodies could be solved by using models that estimate $R_{n\,\text{water}}$ from land-based meteorological data (McJannet et al., 2013; McMahon et al., 2013). The models used to estimate $R_{n\,\text{water}}$ from land-based meteorological data vary in their level of accuracy, complexity and data input requirements (Wang and Liang, 2009). McJannet et al. (2008) stressed that $R_{n\,\text{water}}$ should be determined from models that are universally applicable and relatively easy to utilise with minimal data input requirements, to improve the estimation of open water evaporation.

The modified Penman-Monteith model of McJannet et al. (2008) utilizes basic land-based meteorological data to estimate $R_{n\,\text{water}}$ required for the computation of open water evaporation. The modified Penman-Monteith model was implemented in Microsoft Excel by Savage et al. (2017) to incorporate the daily solar radiation estimation model introduced by Hargreaves and Samani (1982), which utilizes daily minimum and maximum air temperature to gap-fill missing solar irradiance data (the spreadsheet is available on request). The Daily Penman, Monteith, Equilibrium Temperature Hargreaves-Samani (DPMETSH) model of Savage and Hellman (2009) estimates daily open water evaporation from the land-based meteorological data. This model utilizes the concept of equilibrium temperature to estimate water-body temperature of the water storage using an iterative procedure to obtain the wet-bulb temperature (Savage, 2017). The estimated water-body temperature is essential for computing outgoing infrared irradiance from the water surface ($L_{\text{out\,water}}$).
For operational purposes, such as water resources management, irrigation management and hydrologic studies, where near-real time estimates of evaporation are needed, the DPMETHS model seems to be a promising model for estimating open water evaporation due to its user-friendliness and minimal data input requirements. However, rigorous validation of the DPMETHS model for different climatic conditions using an extended period of in-situ measurements collected from different sizes of water storages is required to improve the confidence of the estimates of the open water evaporation (Savage et al., 2017). Within this context, validation of the procedure to estimate \(R_{\text{water}} \) using the DPMETHS model is critical, since \(R_{\text{water}} \) is one of the key drivers of open water evaporation (McJannet et al., 2008). Consequently, poor estimation of \(R_{\text{water}} \) using the DPMETHS model could result in significant errors in estimating open water evaporation, leading to inefficient management of water resources. Therefore, the estimates of \(R_{\text{water}} \) from the DPMETHS model need to be tested for suitability against in-situ measurements of \(R_{\text{water}} \), collected from water storages from different climatic conditions before the model could be utilised with confidence to estimate \(R_{\text{water}} \) for open water evaporation. Therefore, the main aim of this study was to evaluate the performance of the DPMETHS model to estimate \(R_{\text{water}} \) using land-based meteorological data from a nearby weather station. In this study, the procedure of the DPMETHS model to estimate daily \(R_{\text{water}} \) was evaluated using daily \(R_{\text{water}} \) in-situ measurements acquired from 5 sites in both hemispheres, representing very different climatic conditions.

MATERIALS AND METHODS

Study site description

Data scarcity of \(R_{\text{water}} \) is the major challenge that hinders the evaluation of newly developed models for estimating \(R_{\text{water}} \) in most countries (Wang and Liang, 2009; McMahon et al., 2013; Savage et al., 2017). Five sites that represent different climatic conditions were selected for the evaluation of the DPMETHS model. The site characteristics, record period and available data from each site are presented in Table 1. The choice of the duration of the \(R_{\text{water}} \) measurements at each site was based on the availability of quality radiative flux measurements using a 4-component net radiometer mounted above the open water surface, and the corresponding land-based daily meteorological data.

Description of the DPMETHS model for computing net irradiance for open water

The model description provided by McJannet et al. (2008) forms the basis of the daily time-step DPMETHS spreadsheet-implemented model of Savage et al. (2017). The DPMETHS model computes \(R_{\text{water}} \), (MJ m\(^{-2}\)) using daily measurements of solar irradiance (\(R_{\text{land}} \), MJ m\(^{-2}\)), maximum and minimum air temperature (\(T_{\text{max}}, ^\circ\text{C}\)), minimum and maximum relative humidity (RH, %) and average wind speed (\(U_{\text{wind}}, \text{m s}^{-1}\)) from a nearby land-based weather station. The estimates of \(R_{\text{water}} \) are calculated from the solar irradiance reaching the water surface (\(R_{\text{water}} \)) minus \(R_{\text{water}} \) based on the reflection coefficient of the water surface (\(r_{\text{water}} \)) and net outgoing infrared irradiance (\(L_{\text{d-water}} - L_{u\text{water}} \)). The net infrared irradiance is calculated from \(T_{\text{d}} \) at 09:00, the estimated daily-average water temperature and a cloudiness factor, following the procedure of De Bruin (1982). The model assumes that the land-based meteorological data represent climatic conditions over open water surfaces and thus, \(R_{\text{land}} = R_{\text{water}} \).

Then \(R_{\text{water}} \) is calculated from:

\[
R_{\text{water}} = R_{\text{land}} - r_{\text{water}} R_{\text{land}} + L_{\text{d-water}} - L_{u\text{water}}
\]

where \(r_{\text{water}} \) is approximately 0.08 (Finch and Hall, 2001) and \(L_{u\text{water}} \) is calculated from:

\[
L_{u\text{water}} = \sigma(T_{d} + 273.15\,^\circ\text{C}) \left(C_t + (1-C_t)(1-0.261\exp(-77.7\times10^{-4}T_d^2))\right)
\]

where \(\sigma = 5.67 \times 10^{-8} \text{ MJ m}^{-2} \text{K}^{-4} \) is the modified for daily time-scale Stefan-Boltzmann constant. The cloudiness factor \(C_t \) is determined using the procedure presented by Jegede et al. (2006): if \(R_{\text{land}}/R_{\text{clear}} \leq 0.9 \), then:

\[
C_t = 1.1 - \frac{R_{\text{land}}}{R_{\text{clear}}}
\]

where:

\[
R_{\text{clear}} = R_{\text{extra}} (0.75 + 2 \times 10^{-7} h)
\]

where \(R_{\text{clear}} \) is the clear-sky solar irradiance (MJ m\(^{-2}\)) and \(h \) is the site altitude (m). The extra-terrestrial solar irradiance (\(R_{\text{extra}} \)) is calculated using a standard astronomical equation involving the day of the year, latitude, declination and sunset hour angle, following the procedure of Allen et al. (1998):

\[
R_{\text{extra}} = \frac{1440}{\pi} G_s d_1 [\Omega \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \sin \Omega]
\]

where \(G_s \) is the solar constant (0.0820 MJ m\(^{-2}\) min\(^{-1}\)), \(d_1 \) is the inverse relative distance from the earth to the sun, \(\Omega \) is the sunset hour angle (rad), \(\phi \) is the latitude (rad) and \(\delta \) is the solar declination (rad), where:

\[
d_1 = 1 + 0.033 \cos \frac{2 \pi t}{365} - 0.00012 \cos \frac{4 \pi t}{365}
\]

\(T_{d} \) is the average air temperature, RH is the relative humidity, \(R_{\text{land}} \) is the land-based solar irradiance, \(U_{\text{wind}} \) is the land-based wind speed, \(R_{\text{water}} \) is the water-based solar irradiance, \(U_{\text{water}} \) is the water-based wind speed, \(L_{\text{d-water}} \) is the water-based incoming infrared irradiance, \(L_{u\text{water}} \) is the water-based outgoing infrared irradiance, \(U_{\text{water}} \) is the water-based wind speed, \(DEWP_{\text{water}} \) is the minimum dew point temperature (°C), \(DEWP_{\text{clear}} \) is the maximum dew point temperature (°C) and \(T_{\text{water}} \) is the water-based surface temperature (°C).

Table 1. Site characteristics, record period and available data that were used for model evaluations

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>Data period</th>
<th>Available daily data</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Falls, United States</td>
<td>42.780°N</td>
<td>112.875°CW</td>
<td>1.328</td>
<td>24 May 2014 to 15 September 2014</td>
<td>(T_{a}, , R_{\text{land}}, , U_{\text{wind}}, , R_{\text{water}}, , L_{\text{d-water}}, , L_{u\text{water}})</td>
</tr>
<tr>
<td>Lahontan, United States</td>
<td>39.3406°N</td>
<td>119.133°CW</td>
<td>1.267</td>
<td>16 May 2014 to 8 September 2014</td>
<td>(T_{a}, , R_{\text{land}}, , U_{\text{wind}}, , R_{\text{water}}, , L_{\text{d-water}}, , L_{u\text{water}})</td>
</tr>
<tr>
<td>Midmar Dam, South Africa</td>
<td>29.5419°S</td>
<td>30.1808°E</td>
<td>985</td>
<td>24 February 2016 to 2 April 2016</td>
<td>(T_{\text{extra}}, , T_{\text{max}}, , R_{\text{extra}}, , R_{\text{land}}, , U_{\text{wind}}, , R_{\text{water}}, , L_{\text{water}}, , L_{\text{d-water}}, , L_{u\text{water}})</td>
</tr>
<tr>
<td>Stampede, United States</td>
<td>51.0379°N</td>
<td>114.0533°CW</td>
<td>1.815</td>
<td>14 May 2014 to 29 August 2014</td>
<td>(T_{\text{extra}}, , T_{\text{max}}, , U_{\text{wind}}, , DEWP_{\text{water}}, , DEWP_{\text{clear}})</td>
</tr>
<tr>
<td>Status Ocean, East Pacific Ocean</td>
<td>22.4620°S</td>
<td>85.6430°CW</td>
<td>0</td>
<td>16 June 2016 to 30 July 2016</td>
<td>(T_{\text{extra}}, , T_{\text{max}}, , U_{\text{wind}}, , DEWP_{\text{water}}, , DEWP_{\text{clear}})</td>
</tr>
</tbody>
</table>

Note:

\(T_{\text{a}} \) (°C) is the average air temperature, RH is the relative humidity, \(R_{\text{land}} \) is the land-based solar irradiance, \(U_{\text{wind}} \) is the land-based wind speed, \(R_{\text{water}} \) is the water-based solar irradiance, \(U_{\text{water}} \) is the water-based wind speed, \(L_{\text{d-water}} \) is the water-based incoming infrared irradiance, \(L_{u\text{water}} \) is the water-based outgoing infrared irradiance, \(U_{\text{water}} \) is the water-based wind speed, \(DEWP_{\text{water}} \) is the minimum dew point temperature (°C), \(DEWP_{\text{clear}} \) is the maximum dew point temperature (°C) and \(T_{\text{water}} \) is the water-based surface temperature (°C).
where \(n \) is the day of the year,
\[
\Omega = \arccos[-\tan \phi \cdot \tan \delta]
\]
\(\delta = \frac{6.0933 \sin 2\pi n}{365} \)
\(\phi \) is the latitude, \(\delta \) the day of the year, \(\omega \) the angular velocity of the Earth, and \(\Omega \) the angle of declination.

Otherwise, if \(R_{\text{sun}} \cdot R_{\text{clear}} > 0.9 \), then:
\[
C_i = 2\left(1 - \frac{R_{\text{sun}}}{R_{\text{clear}}} \right)
\]

In Eq. 1, \(L_{\text{water}} \) is given by:
\[
L_{\text{water}} = 0.97\sigma (T_{\text{water}}^4 + 273.15)^{4/3} (10)
\]
where \(T_{\text{water}} \) (°C) is the temperature of the water surface. The \(L_{\text{water}} \) may be approximated using a Taylor series expansion at \(T_{\text{water}} \) as:
\[
L_{\text{water}} = 0.97\sigma (T_{\text{water}}^4 + 273.15)^{4/3} + 4\sigma (T_\text{water}^4 + 273.15)^{1/3} (11)
\]
where the factor 0.97 corresponds to the emissivity of water (McJannet et al., 2008). \(T_{\text{water}} \) is the land-based daily averaged air temperature (°C) at a reference height of 2 m and \(T_{\text{water, i-1}} \) is the average water temperature on day i-1 of the current day (°C).

The daily-average water temperature on day \(i \), \(T_{\text{water, i}} \), is calculated from \(T_{\text{water, i-1}} \) a water-body time constant \(\tau (\text{day}) \) and an equilibrium temperature \(T_{\text{water}} \): (12)
\[
T_{\text{water, i}} = T_{\text{water}} + (T_{\text{water, i-1}} - T_{\text{water}}) \exp(-t/\tau)
\]

The water-body time constant \(\tau \) is calculated based on the De Bruin (1982) method:
\[
\tau = \frac{\rho_{\text{water}} c_{\text{water}} d}{4\sigma (T_{\text{water}}^4 + 273.15)^{1/3} + f(U)(\Delta_{\text{water}} + \gamma)}
\]
where \(\rho_{\text{water}} \) is the density of water (kg·m⁻³), \(c_{\text{water}} \) the specific heat capacity of water (0.004185 MJ·kg⁻¹·K⁻¹), and \(d \) the water depth (m), \(T_{\text{water}} \) the wet-bulb temperature, \(\gamma \) the psychrometric constant, \(\Delta_{\text{water}} \) the wet-bulb temperature, \(\gamma \) the psychrometric constant, \(\Delta_{\text{water}} \) the wet-bulb temperature, \(g \) the vertical gradient, \(f(U) \) the wind function which is usually derived empirically for a particular location. The \(f(U) \) above water is computed using the Harbeck (1962) method:
\[
f(U) = 7.127 A^{1/3} U_2
\]
where \(f(U) \) is the wind function for wind speed measured at a height of 2 m above the surface (MJ·m⁻²·kPa⁻¹) and \(A \) is the surface area of the water storage (m²).

For open water, the net irradiance at the wet bulb, instead of the water-predicted temperature was used to avoid any calculations involving water depth. For daily open water evaporation, Penman (1948) used a wind speed function \(f(U) \):
\[
f(U) = 6.43(a + b U_2)
\]
\(U_2 \) is the 2 m wind speed (m·s⁻¹).

Penman (1948) originally used \(a = 1.0 \) and \(b = 0.54 \) s⁻¹·m⁻¹, but later revised \(a = 1.0 \) to \(a = 0.5 \) with \(b \) unchanged (Penman, 1956, 1963 cited by Jensen, 2010).

The equilibrium temperature, \(T_e \) (°C), is calculated based on the equation of De Bruin (1982):
\[
T_e = T_{\text{water}} + \frac{R_{\text{water}}}{4\sigma (T_{\text{water}}^4 + 273.15)^{1/3} + f(U)(\Delta_{\text{water}} + \gamma)}
\]

Data collection and processing

Daily measurements of meteorological variables such as \(R_{\text{sun}} \) and \(T_{\text{water}} \) were used to evaluate the performance of the DPMETHS model estimates against daily measurements of \(R_{\text{water}} \) and were calculated following the procedure of Willmott et al. (1985) as:
\[
\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (R_{\text{water}} - \hat{R}_{\text{water}})^2}{n}}
\]
\[
\text{MRE} = \frac{\sum_{i=1}^{n} (R_{\text{water}} - \hat{R}_{\text{water}})}{n}
\]
\[
d = 1 - \frac{\sum_{i=1}^{n} (R_{\text{water}} - \hat{R}_{\text{water}})^2}{\sum_{i=1}^{n} (|R_{\text{water}} - \hat{R}_{\text{water}}|^2 + |R_{\text{water}} - \bar{R}_{\text{water}}|^2)}
\]

RESULTS AND DISCUSSION

Weather conditions during the study period at all 5 sites

Newly developed models to estimate \(R_{\text{water}} \) from land-based meteorological data still require evaluation against in-situ measurements collected over a wide range of climatic conditions before they can be used with confidence. The meteorological data used for model evaluation illustrated a wide range of climatic
conditions which had implications for the further interpretation of the results (Table 2).

Evaluation of the DPMETHS model at all 5 sites

To evaluate the performance of the DPMETHS model, comparisons were made between the daily estimates of $R_{n\text{ water}}$ and measurements of $R_{n\text{ water}}$ at all 5 sites. The relationships between estimated net irradiance ($R_{n\text{ water}}$) and measured net irradiance ($R_{n\text{ water}}$) were reasonable at all sites (Fig. 1; Table 3).

Performance of the DPMETHS model at all 5 sites

The correlation between $R_{n\text{ water}}$ and $R_{n\text{ water}}$ indicated a statistically significant relationship, with r^2 values ranging from 0.85 for Midmar Dam to 0.96 for the Stampede site. Furthermore, the results showed that the DPMETHS model over-estimated $R_{n\text{ water}}$ for all sites, with c values ranging from 0.74 MJ·m$^{-2}$ for Stampede to 3.02 MJ·m$^{-2}$ for the Stratus Ocean site. These small values of c indicate the reasonable performance of the DPMETHS model for all 5 sites. Furthermore, d-values ranging from 0.87 for Stratus Ocean to 0.97 for Midmar Dam indicated reasonable similarities between $R_{n\text{ water}}$ and $R_{n\text{ water}}$ fluxes for all sites.

The relationship between $R_{n\text{ water}}$ predicted from the DPMETHS model and $R_{n\text{ water}}$ was reasonable at all 5 sites, with RMSE values ranging from 0.60 MJ·m$^{-2}$ for Stratus Ocean to 1.89 MJ·m$^{-2}$ for Midmar Dam. The MBE values ranged from 0.36 MJ·m$^{-2}$ for Stratus Ocean to 3.56 MJ·m$^{-2}$ for Midmar Dam indicating that the DPMETHS model slightly over-estimated $R_{n\text{ water}}$ for all sites. The greater over-estimation of $R_{n\text{ water}}$ was observed at Midmar Dam, while an improved model performance (low RMSE values) was observed at Stratus Ocean as a result of the differences between U_{land} and U_{water} which was used in the DPMETHS model as an input. Myeni (2016) reported that U_{water} was always greater than U_{land} at Midmar Dam due to the open fetch on the water-based station compared to the land-based station which was closer to buildings and trees. The smoother surface of open water compared to land could have resulted in greater U_{land} than U_{water} at Midmar Dam (Finch and Hall, 2001). The higher U_{water} than expected could have resulted in surface cooling and decreased T_{water} (Alcântara et al., 2010). Consequently, the DPMETHS model over-estimated $R_{n\text{ water}}$ due to under-estimations of $I_{n\text{ water}}$. These findings suggested that using land-based meteorological data that do not represent weather conditions above open water surfaces could result in significant errors in $R_{n\text{ water}}$ predicted from the DPMETHS model. Thus, it is recommended that the land-based meteorological data should be acquired with caution from a nearby weather station that represents the prevailing weather conditions above water storage of interest (Eversen, 1999).

Table 2. Summary of meteorological data used for model evaluation

<table>
<thead>
<tr>
<th>Site</th>
<th>Statistics</th>
<th>T_{min} (°C)</th>
<th>T_{max} (°C)</th>
<th>RH$_{\text{min}}$ (%)</th>
<th>RH$_{\text{max}}$ (%)</th>
<th>U_{land} (m·s$^{-1}$)</th>
<th>R_{land} (MJ·m$^{-2}$)</th>
<th>R_{water} (MJ·m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Falls</td>
<td>Minimum</td>
<td>−14.63</td>
<td>−3.25</td>
<td>11.01</td>
<td>46.40</td>
<td>1.66</td>
<td>1.79</td>
<td>3.06</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>18.93</td>
<td>34.40</td>
<td>80.12</td>
<td>97.34</td>
<td>12.33</td>
<td>32.48</td>
<td>23.18</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>8.86</td>
<td>22.63</td>
<td>33.07</td>
<td>83.60</td>
<td>4.63</td>
<td>21.31</td>
<td>16.22</td>
</tr>
<tr>
<td></td>
<td>Std. dev</td>
<td>5.38</td>
<td>6.61</td>
<td>12.76</td>
<td>9.14</td>
<td>2.55</td>
<td>7.83</td>
<td>4.98</td>
</tr>
<tr>
<td>Lahontan</td>
<td>Minimum</td>
<td>6.94</td>
<td>10.50</td>
<td>6.21</td>
<td>26.96</td>
<td>1.65</td>
<td>5.81</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>26.01</td>
<td>39.56</td>
<td>71.76</td>
<td>94.20</td>
<td>7.26</td>
<td>32.83</td>
<td>22.48</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>17.00</td>
<td>29.90</td>
<td>14.35</td>
<td>49.24</td>
<td>3.74</td>
<td>26.40</td>
<td>16.90</td>
</tr>
<tr>
<td></td>
<td>Std. dev</td>
<td>3.81</td>
<td>4.81</td>
<td>9.74</td>
<td>16.16</td>
<td>1.11</td>
<td>5.28</td>
<td>3.91</td>
</tr>
<tr>
<td>Midmar Dam</td>
<td>Minimum</td>
<td>10.28</td>
<td>16.72</td>
<td>13.13</td>
<td>79.50</td>
<td>0.645</td>
<td>2.181</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>20.10</td>
<td>34.94</td>
<td>90.90</td>
<td>100.00</td>
<td>1.713</td>
<td>26.758</td>
<td>19.02</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>15.64</td>
<td>27.12</td>
<td>50.56</td>
<td>97.18</td>
<td>1.104</td>
<td>18.131</td>
<td>13.55</td>
</tr>
<tr>
<td></td>
<td>Std. dev</td>
<td>2.10</td>
<td>5.23</td>
<td>20.69</td>
<td>4.62</td>
<td>0.374</td>
<td>7.301</td>
<td>4.84</td>
</tr>
<tr>
<td>Stampede</td>
<td>Minimum</td>
<td>−1.45</td>
<td>5.69</td>
<td>8.16</td>
<td>53.45</td>
<td>1.44</td>
<td>4.08</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>18.02</td>
<td>34.12</td>
<td>83.70</td>
<td>94.00</td>
<td>6.94</td>
<td>34.03</td>
<td>23.37</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.94</td>
<td>25.16</td>
<td>21.00</td>
<td>80.65</td>
<td>2.99</td>
<td>27.14</td>
<td>17.22</td>
</tr>
<tr>
<td></td>
<td>Std. dev</td>
<td>3.68</td>
<td>4.99</td>
<td>11.18</td>
<td>9.73</td>
<td>1.15</td>
<td>6.60</td>
<td>4.88</td>
</tr>
<tr>
<td>Stratus Ocean</td>
<td>Minimum</td>
<td>17.30</td>
<td>19.00</td>
<td>60.52</td>
<td>63.92</td>
<td>2.09</td>
<td>6.61</td>
<td>3.79</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>20.20</td>
<td>21.10</td>
<td>79.92</td>
<td>83.39</td>
<td>10.38</td>
<td>18.83</td>
<td>13.01</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>18.76</td>
<td>19.94</td>
<td>67.90</td>
<td>72.70</td>
<td>5.97</td>
<td>11.19</td>
<td>7.45</td>
</tr>
<tr>
<td></td>
<td>Std. dev</td>
<td>0.54</td>
<td>0.49</td>
<td>4.70</td>
<td>4.42</td>
<td>1.88</td>
<td>3.44</td>
<td>2.31</td>
</tr>
</tbody>
</table>

$T_{\text{min}}, T_{\text{max}}$ are minimum and maximum air temperature, respectively, $R_{n\text{ water}}, RH_{\text{max}}$ are minimum and maximum relative humidity, respectively, U is the wind speed, R_{s} is the solar irradiance, $R_{n\text{ water}}$ is the measured net irradiance of open water and std. dev. is the standard deviation.

Table 3. Statistical results of the comparisons between estimated net irradiance ($R_{n\text{ water}}$) and measured net irradiance ($R_{n\text{ water}}$)

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>m</th>
<th>c (MJ·m$^{-2}$)</th>
<th>r^2</th>
<th>RMSE (MJ·m$^{-2}$)</th>
<th>MBE (MJ·m$^{-2}$)</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Falls</td>
<td>112</td>
<td>0.99</td>
<td>2.10</td>
<td>0.94</td>
<td>1.26</td>
<td>1.58</td>
<td>0.95</td>
</tr>
<tr>
<td>Lahontan</td>
<td>116</td>
<td>1.07</td>
<td>1.78</td>
<td>0.94</td>
<td>1.10</td>
<td>1.22</td>
<td>0.87</td>
</tr>
<tr>
<td>Midmar Dam</td>
<td>36</td>
<td>0.91</td>
<td>1.74</td>
<td>0.85</td>
<td>1.89</td>
<td>3.56</td>
<td>0.97</td>
</tr>
<tr>
<td>Stampede</td>
<td>108</td>
<td>1.06</td>
<td>0.74</td>
<td>0.96</td>
<td>1.12</td>
<td>1.26</td>
<td>0.96</td>
</tr>
<tr>
<td>Stratus Ocean</td>
<td>45</td>
<td>0.65</td>
<td>3.02</td>
<td>0.87</td>
<td>0.60</td>
<td>0.36</td>
<td>0.93</td>
</tr>
</tbody>
</table>

n is the number of observations, m the slope, c the y-intercept, r^2 the coefficient of determination, RMSE the root mean square error, MBE the mean bias error and d index of agreement.
Applicability and limitations of the DPMETHS model

The DPMETHS model, a daily model, uses the daily-averaged U_{land} as an input and, therefore, this model does not explicitly account for night-time $R_{n_{water}}$ which is dominated by $L_{d_{water}}$ that is directly governed by T_{water}. For example, Savage et al. (2017) reported that U_{water} was a maximum during night-time and minimal early in the morning at Midmar Dam. Consequently, higher U_{water} at night-time than expected could result in surface cooling and decreased T_{water}. Consequently, the DPMETHS model is likely to over-estimate $R_{n_{water}}$ due to under-simulations of $L_{d_{water}}$ during clear and windy days. Furthermore, some of the discrepancies between $R_{n_{water}}$ and $R_{n_{water}}$ could be attributed to the poor estimation of $L_{d_{water}}$ within the DPMETHS model, since this model only estimates the cloud fraction with no optical properties. However, whether the presence of clouds will have a net cooling or warming effect at the water surface depends on the cloud's optical properties such as the cloud's altitude, its size, and the make-up of the particles that form the cloud (Key et al., 1996).

The findings of this study indicate that the performance of the DPMETHS model depends on the representativeness of the land-based daily meteorological data to the weather conditions above the open water surface. Therefore, future research on measuring and modelling of $R_{n_{water}}$ for the estimation of open water evaporation purposes should be cautious of the possible contrasts...
of weather conditions between land and water surfaces. Despite the discrepancies between \(R_{\text{nu,sea}} \) and \(R_{\text{nu,water}} \), the findings of this study indicated that the DPMETHS model can be reliably used to estimate \(R_{\text{nu,sea}} \) for estimating open water evaporation over a wide range of climatic conditions. The DPMETHS model is a promising and user-friendly model for estimating \(R_{\text{nu,sea}} \) for the estimation of open water evaporation at high resolution with minimal land-based meteorological data that are often readily available from a standard weather station. Furthermore, the DPMETHS model uses universally applicable scientific theories and assumptions to estimate daily \(R_{\text{nu,sea}} \) accurately. The spreadsheet-based iterative procedure of the DPMETHS model evaluated in this study allows easy data handling and visual inspection.

CONCLUSIONS

The DPMETHS model to estimate daily \(R_{\text{nu,sea}} \) was evaluated using daily \(R_{\text{nu,sea}} \) in-situ measurements acquired from 5 sites, representing different climatic conditions.

The DPMETHS model reliably estimates \(R_{\text{nu,sea}} \) for the estimation of open water evaporation over a wide range of climatic conditions. Major discrepancies between \(R_{\text{nu,sea}} \) and \(R_{\text{nu,water}} \) were attributed to the use of the land-based meteorological data that do not represent weather conditions over open water surfaces. Therefore, it is recommended that the land-based weather stations should be selected with caution, such that they represent the weather conditions above water storage of interest.

The spreadsheet-based iterative procedure of the DPMETHS model to estimate daily \(R_{\text{nu,sea}} \) using minimal land-based meteorological data is user-friendly, with minimal computational requirements, and is quick and reliable. It also allows easy data handling and visual inspection. One of the limitations of the DPMETHS model is that the model utilizes the daily meteorological data which might not be a true representation of climatic conditions for the entire day, since most of the weather variables had a wide range of diurnal variability. Therefore, a sub-daily version of the DPMETHS model is recommended for improved estimation of \(R_{\text{nu,water}} \) for open water evaporation.

AUTHOR CONTRIBUTIONS

Conceptualization – L. Myeni; MJ Savage and AD Clulow; methodology – L. Myeni and MJ Savage; data analysis – L. Myeni; original draft preparation and writing – L. Myeni; L. Myeni, MJ Savage and AD Clulow; supervision – MJ Savage and AD Clulow.

ACKNOWLEDGMENTS

Financial support from the Water Research Commission (South Africa) as part of project K5/2355, University of KwaZulu-Natal (UKZN) and the National Research Foundation is gratefully acknowledged. We also gratefully acknowledge Ezemvelo KwaZulu-Natal Wildlife, and the South African Department of Water and Sanitation for use of facilities at Midmar Dam. The United States Bureau of Reclamation (http://owen.dri.edu), Water Research Commission (South Africa) and the Woods Hole Oceanographic Institution (http://www.ndbc.noaa.gov) are gratefully acknowledged for the provision of data. The technical support from Mr Jonathan Pasi (University of KwaZulu-Natal) is gratefully acknowledged.

REFERENCES

