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A South African inland fisheries policy will depend on a reliable long-term supply of social-ecological data 
covering freshwater fisheries at a broad geographic scale. Approaches to systematic planning of research 
and monitoring are demonstrated herein, based on a fishery-independent gillnet dataset covering 44 dams, 
and geographic information system maps of monthly and annual climate variables, human land use, and 
road access in a 5 km zone around 442 dams. Generalised linear mixed models were used to determine 
the covariates of gillnet catch per unit effort. Such covariates are required for a model-based process to 
select a subset of state-owned dams for a long-term fishery survey programme. The models indicated a 
monthly climate influence on catch per unit effort and climatic drivers of fish species distributions. However, 
unexplained variation is overwhelming and precludes a model-based survey design process. Non-hierarchical 
clustering of 442 dams was then done based on annual climate and human land use variables around dams. 
The resulting clusters of dams with shared climate and land use characteristics indicates the types of dams 
that should be selected for monitoring to represent the full range of climate and land use characteristics. 
Surrounding land use could indicate the socioeconomic characteristics of fisheries, for example, dams that 
may support subsistence-based communities that require increased research effort. Finally, although primary 
catchments could be useful for organising national-scale management, land use cover in the 5 km zone 
around dams varied widely within the respective primary catchments. Beyond these proposed approaches 
to plan research, this study also reveals various data deficiencies and recommends additional future studies 
on other possible methods for systematic research planning.
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INTRODUCTION

South African freshwater impoundments play an important role in food security and poverty 
alleviation, by housing fish populations that are valued for recreation and consumption (Ellender 
et al., 2009; Beard et al., 2011; McCafferty et al., 2012; Beatty et al., 2017). Large-scale commercial 
freshwater fisheries are generally economically unviable in South Africa (McCafferty et al., 2012; 
Britz, 2015; Barkhuizen et al., 2016). However, recreational fishing has been well-established for 
decades and contributes to local economies (Ellender et al., 2009; McCafferty et al., 2012; Britz, 
2015). Small-scale and subsistence freshwater fisheries are widespread and increasing, but, due to 
historical marginalisation and lack of institutional policy support, often conflict with recreational 
fishers (Andrew et al., 2000; Hara and Backeberg, 2014; Britz, 2015; Tapela et al., 2015).

The need for an institutional policy for the sustainable management and equitable use of freshwater 
fisheries has been discussed in a series of papers (e.g. Weyl et al., 2007; McCafferty et al., 2012; Hara 
and Backeberg, 2014; Britz, 2015). These studies and others (e.g. Beard et al., 2011; Lynch et al., 
2016; Weyl et al., 2021) highlight the need for capacity building in the small-scale fishing sector 
and preventing ecosystem degradation and overfishing that may be exacerbated by stakeholder 
conflicts. Since 2016 the Department of Environment, Forestry and Fisheries of South Africa has 
been developing the National Freshwater (Inland) Wild Capture Fisheries Policy following national 
and international sustainable development guidelines and the ecosystem approach to fisheries (Beard 
et al., 2011; Weyl et al., 2021). Policy development is supported by comprehensive social-ecological 
data collated in two Water Research Commission scoping studies (Britz et al., 2015; Tapela et al., 
2015). Subsequently, in June 2018, the Southern African Society of Aquatic Scientists convened 
a workshop to identify priority research questions and knowledge requirements for the policy  
(Weyl et al., 2021).

Sustainable management in a national policy framework is dependent on data that can be readily 
supplied with simple methods at a reasonable cost (Bonar and Hubert, 2002; Walmsley, 2002). 
Currently the immediate knowledge requirements for policy development and implementation are 
impeded by a lack of recent or long-term data on fishery stocks and socioeconomic characteristics 
covering inland waterbodies across South Africa (McCafferty et al., 2012; Britz et al., 2015; Tapela 
et al., 2015; Weyl et al., 2021). Like inland fisheries worldwide, South African dams’ ecological and 
socioeconomic characteristics vary spatiotemporally, which precludes blanket management and 
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legislation and necessitates dam-specific adaptive management 
and data collection (Hara and Backeberg, 2014; Britz et al., 
2015; Weyl et al., 2021). Thus, comprehensive multi-disciplinary 
information is needed for each dam, including the population 
and life-history characteristics of the target species, types of users 
(e.g. recreational, subsistence or commercial), harvest methods 
(e.g. gear type, intensity and frequency), and the economic 
and subsistence value (Weyl et al., 2007; Ellender et al., 2009; 
McCafferty et al., 2012; Hara and Backeberg, 2014; Britz, 2015).

Many rapid sampling methods can supply these data on a case-
by-case basis (Beard et al., 2011; Tapela et al., 2015; Lorenzen 
et al., 2016). However, sustained long-term sampling is needed 
for adaptive management and to monitor effects from further 
socioeconomic development and climate change (Dallas and 
Rivers-Moore, 2014; Paukert et al., 2017; Kao et al., 2020). 
Consequently, cost and labour input may need to be systematically 
prioritised, focusing on fisheries that are most likely to be 
vulnerable to environmental stressors, generate reliable data, 
and support sustainable development goals (Beard et al., 2011; 
Hara and Backeberg, 2014; Paukert et al., 2017). Lack of funding 
and irregular data collection is pervasive on inland fisheries 
worldwide, and overcoming the resultant data deficiencies is an 
active area of research (Beard et al., 2011; Lorenzen et al., 2016; 
Lynch et al., 2016; Deines et al., 2017; Paukert et al., 2017). Some 
tools suggested by recent global-scale studies (e.g. Lorenzen et al., 
2016; Deines et al., 2017; Kao et al., 2020) may be useful in a South 
African context, including using geographic information system 
(GIS) climate and land use data, and using representative subsets 
of waterbodies for modelling general patterns.

Fisheries-independent surveys (FIS) are widely regarded as 
a valuable element of fisheries management, given that the 
sampling method can be standardised for comparison across 
regions (Bonar and Hubert, 2002; McCafferty, 2012; Lorenzen 
et al., 2016). Although FIS can enable rapid stock assessment, 
such as assessing fish size distribution and community structure, 
its real value lies in supplying catch per unit effort (CPUE) in a 
long-term time-series to monitor how fish populations respond to 
changes in fishing pressure and the environment (Peel et al., 2012; 
Lorenzen et al., 2016). McCafferty (2012) modelled CPUE of 26 
dams across South Africa based on a gillnet fleet with a matching 
range of mesh sizes (see also Weyl et al., 2007; Winker, 2010). 
This dataset, housed at the South African Institute for Aquatic 
Biodiversity, has since expanded to 44 dams representing several 
river basins and climate zones, and spanning the years 1998 to 
2017 (personal observation, see methods section). However, too 
few recurrent samples from individual dams are available for a 
time-series.

To initiate a long-term monitoring programme, additions to the 
gillnet dataset can focus on recurrent sampling of a representative 
subset of dams across South Africa to produce reliable cost-
effective predictive estimates that can be extrapolated to 
poorly sampled or unsampled dams (Lorenzen et al., 2016). A 
representative subset of dams can be selected through a model-
based survey design process, which has pertinent advantages 
over a random stratified survey design process (Peel et al., 2012). 
Model-based design accommodates multiple target species with 
different habitat requirements, variable sampling effort due to 
logistical and practical constraints (e.g. different dam sizes and 
remote location of dams) and non-Gaussian response variables 
(McCafferty, 2012; Peel et al., 2012). However, model-based survey 
design depends strongly on predictive covariates – a substantial 
amount of initial data is required to determine the relationships 
between CPUE and covariates and build the initial model (Peel 
et al., 2012). McCafferty’s (2012) models did not reveal strong 
covariate relationships, and therefore the utility of the expanded 

gillnet dataset for determining useful relationships needs to be 
evaluated before a model-based survey can be designed.

Given the current unavailability of a fishery monitoring 
programme, a large-scale spatial analysis linking dams to 
environmental variation and human activity indicators could 
identify dams with common social-ecological characteristics to 
prioritise for intensive multidisciplinary assessments (Beard et 
al., 2011; Camp et al., 2020). This approach is reminiscent of a 
conservation planning assessment, where high-biodiversity areas 
that are threatened by human activities are revealed for priority 
conservation actions under various cost and budget scenarios 
(e.g. Rivers-Moore et al., 2011). Britz et al. (2015) used GIS climate 
data and expert scores to identify river basins suitable for stocking 
with fishery species. However, there is a further need to quantify 
variation in human land use and climate, which may vary in their 
relative importance or have synergistic effects on fish populations 
(Dallas and Rivers-Moore, 2014; Camp et al., 2020; Jackson et 
al., 2020; Kao et al., 2020). An assessment of the characteristics 
of a large number of dams covering a large geographic area 
complements both random stratified and model-based survey 
design by evaluating the full range of variation in climatic and 
human-related covariates that need to be represented by selected 
sampling sites (Peel et al., 2012; Baker et al., 2019).

Dams often support a combination of recreational and subsistence 
fishing (Britz et al., 2015; Ellender et al., 2009; Tapela et al., 
2015). Nevertheless, Weyl et al. (2007) suggest that common 
characteristics like access, potential for tourism, and dominant 
fish species, predispose dams to different management types, e.g., 
commercial, recreational, open access and community-managed 
subsistence fishing. Dams located in an area with low economic 
development (e.g., close to a rural town or subsistence farms) 
could be essential to local food security (Weyl et al., 2007; Britz 
et al., 2015; Tapela et al., 2015). Dams located in remote, sparsely 
populated and untransformed areas, or in nature reserves with 
restricted access, may have a higher value as a recreational fishery 
(Weyl et al., 2007; Britz et al., 2015). Dams enclosed in commercial 
agricultural property may have limited scope in terms of fishery 
development (Weyl et al., 2007; Britz et al., 2015).

In the current study, the utility of existing data from fishery-
independent gillnet surveys was examined in relation to 
climatic and human-related factors, with the aim to provide the 
background information needed to design a long-term model-
based monitoring programme. Further, a broad range of dams 
across South Africa is classified based on spatially associated 
climatic and human-related characteristics, to explore whether 
such broad-scale classification could enable setting data collection 
and management goals. Both these objectives focused on the local 
area surrounding each dam following Ellender et al. (2009), who 
emphasized the local interactions between the Gariep Dam and 
both subsistence and recreational fishers. However, dams likely 
influence and are influenced by a larger surrounding region (e.g. 
a river drainage basin or primary catchment, Walmsley, 2002; 
Jooste et al., 2014; Jackson et al., 2020). Therefore, the current 
study also examined the available data in relation to South Africa’s 
primary catchments, specifically whether land use characteristics 
surrounding dams are comparable to general conditions in the 
catchments and, consequently, whether catchments are useful 
units within which to organise fishery management.

METHODS

Gillnet data

Between the years 1998 and 2017, 44 dams were sampled with 
a standard fleet of gillnets comprising five randomly positioned 
panels, with stretched mesh sizes of 44 mm, 60 mm, 70 mm, 
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100 mm and 144 mm (9 m x 3 m panels, total size 45 m x 3 m), 
and the data stored at the South African Institute for Aquatic 
Biodiversity. Dams were sampled within different years and 
months, many dams were sampled only once, and effort (number 
of nets deployed) varied among dams and months. Six species 
that are most widespread in this dataset were examined: common 
carp (Cyprinus carpio, 31 dams), African sharp-toothed catfish 
(Clarias gariepinus, 35 dams), Mozambique tilapia (Oreochromis 
mossambicus, 14 dams), smallmouth yellowfish (Labeobarbus 
aeneus, 21 dams), moggel (Labeo umbratus, 28 dams), and Orange 
River mudfish (Labeo capensis, 21 dams). Catch per unit effort 
(CPUE) of all species summed was also examined and CPUE 
of all native cyprinids, i.e., the sum of L. aeneus, L. umbratus, 
L. capensis, papermouth (Enteromius mattozi), largemouth 
yellowfish (Labeobarbus kimberleyensis), largescale yellowfish 
(Labeobarbus marequensis), leaden labeo (Labeo molybdinus) and 
rednose labeo (Labeo rosae).

Geographic information system data

A GIS map of 435 dam polygons (DWA, 2011) was used to 
represent a broad range of the larger dams and lakes (> 2 ha 
surface area) present within all the river basins delineated in the 
primary catchments of South Africa (DWA, 2009). Seven dams 
for which gillnet data were available were not present in the GIS 
dams map. Therefore, the surface water land class from the South 
African National Landcover database (DEA, 2015) was used to 
create polygons at the dams’ coordinates in QGIS version 3.6.2 
(QGIS Development Team, 2018) and added to the larger map, 
for a total of 442 dams (Fig. 1). Next, QGIS was used to calculate 
the surface area of each dam from the polygons, and a buffer 
zone of 5 km was delineated around each dam. Then, QGIS 
was used to calculate road density (CD:NGI, 1998) as length 
per unit area (km per km2) in the buffer zones, and R (R core 
team, 2018) geographic packages ‘raster’ (Hijmans, 2019) and 
‘rgdal’ (Bivand et al., 2018) were used to quantify mean values 
of the climatic variables, and percentage cover of the land use 
variables and protected area in the buffer zones. Climatic variables 
included annual mean temperature, minimum temperature of the 
coldest month (hereafter ‘minimum temperature’), maximum 
temperature of the warmest month (hereafter ‘maximum 

temperature’) and annual precipitation for all 442 dams, as well as 
mean monthly temperature and precipitation matching the gillnet 
monthly data (Hijmans et al., 2005). Land use variables included 
percentage cover of commercial and subsistence cultivated area, 
percentage formal urban build-up (cities and towns) and rural 
build-up (villages) and the percentage natural (untransformed) 
area (DEA, 2015). Protected area was a combination of formal 
national parks, provincial reserves, and private game reserves  
(SANParks, 2004).

Analyses

The relationship between monthly gillnet CPUE for each dam, 
and climatic variables, land use types, road density, protected 
area and dam area, was examined using generalised linear mixed 
effects models (R package ‘lme4’, Bates et al., 2015) with the dams’ 
identities as random effect. Number of nets deployed per month 
per dam was used as an offset term to account for variation in 
sampling effort, which ensures that CPUE is modelled when 
catch weight is the response variable (Shono, 2008). Further, the 
data were weighted by sampling year to reduce the importance of 
older data that might not be a reasonable representation of recent 
or current fish population size, and likely do not match the fairly 
new land use dataset. Total CPUE was modelled with a gamma 
distribution for positive continuous data, whereas CPUE of native 
cyprinids and each of the six dominant species were modelled with 
the Tweedie distribution for positive continuous data with zeros 
(R package ‘mgcv’, Tweedie, 1984; Shono, 2008; Peel et al., 2012).

To find the most parsimonious combination of predictor variables 
that best explain each response variable, redundant variables were 
removed by evaluating collinearity (variance inflation factors 
from the R package ‘car’, Fox and Weisberg, 2019), and then 
applying a backwards stepwise selection procedure to find the 
model with the lowest Akaike’s Information Criterion value. The 
outcome of each of these best-fitting models were expressed as 
an analysis of variance (ANOVA), where the random effect’s test 
statistic and significance were obtained by comparing a model 
without the random effect to the model with the random effect  
(R function ‘anova’). Finally, to compare dams, CPUE was 
estimated for each dam from each ‘best’ model, but where the 

Figure 1. A representative set of 442 dams across South Africa, with triangles indicating the 44 dams with gillnet data. The river basins delineated 
by primary catchments are indicated with the standard alphabetic codes, with faint lines depicting the river network.
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monthly mean temperature and precipitation was kept at a 
constant (mean values across the dataset) to remove any seasonal 
effects (‘predict.lme’ from R package ‘nlme’, Pinheiro et al., 2018).

Next, all 442 dams were classified: firstly, according to the four 
climatic variables (annual mean, minimum and maximum 
temperature and annual precipitation) and, secondly, according to 
the four human land use types, natural (untransformed) land cover, 
protected area cover, and road density. Classification was done 
through first conducting a principal component analysis (PCA), 
and then using the scores of the first components that together 
explain more than 80% of variation to conduct a k-means cluster 
analysis limited to four clusters for simplicity (R Core Team, 2018).

Finally, percentage cover of the four human land use types was 
calculated for each primary catchment (Bivand et al., 2018; 
Hijmans, 2019). Variation among dams in terms of percentage 
land use cover within the 5 km buffer zones was illustrated 
with violin plots (R package ‘yarrr’, Phillips, 2017) grouped by 
primary catchment (DWAS, 2009). Wilcoxon rank sum tests, 
the non-parametric equivalent to 1-sample t-tests, were used 
to test whether this variation was significant. Specifically, the 
difference between land use around dams and land use in the 
whole catchment was calculated, and the Wilcoxon test was used 
to compare these differences to a mean of zero. The test was only 
applied when more than 5 non-zero values were available. A 
Holm correction was applied to the multiple p values obtained 
from catchments for each land cover type (Holm, 1979).

RESULTS

Gillnet data analysis

Natural land cover was collinear with human land use cover 
(negatively related), and annual mean temperature was collinear 
with minimum and maximum temperature, and these two 
variables were therefore not included in models (variance inflation 
factors for remaining variables < 4.5). Dam surface area was not 
included in any models after backwards stepwise selection.

Generally, CPUE increased in warmer months and decreased 
in wetter months, except for C. carpio, O. mossambicus and  
L. capensis (Table 1). Total CPUE has a weak negative relationship 
with minimum temperature and native cyprinid CPUE models did 
not include any climate covariates other than monthly temperature 
and monthly precipitation, likely because species with different 
climate associations are combined. CPUE for individual species 
indicate climate affiliations (Appendix, Fig. A1) – most species were 
negatively related to minimum and maximum temperatures and 
annual precipitation, except for the positive relationships between 

O. mossambicus and minimum and maximum temperature and 
annual precipitation, and between C. gariepinus and maximum 
temperature (Table 1).

Human land use variables had much weaker relationships with 
CPUE, and were included in fewer models. Native cyprinid 
CPUE was negatively related to both types of urban build-up. 
C. gariepinus was negatively related to rural build-up and road 
density, O. mossambicus positively related to protected area and 
formal urban build-up and negatively related to road density, and 
L. aeneus and L. umbratus were positively related to commercial 
cultivation (Table 1).

The random effect had the strongest influence in all models, 
indicating large variation among dams that are not accounted for 
by the variables examined in the current study (Table 1). Further, 
some total CPUE estimates are much lower than CPUE estimates 
for specific species (e.g., L. aeneus in Armenia and Sterkfontein 
Dams). Additionally, although the Tweedie models successfully 
estimated zero CPUE where positive samples were absent, some 
of these estimates are associated with very high uncertainty 
(Appendix, Table A1).

Cluster analysis

The first two components of the PCA on the four climatic variables 
explain more than 86% variation, with highest factor loadings 
by annual mean temperature and minimum temperature in 
Component 1, and highest loadings of maximum temperature 
and annual precipitation in Component 2 (Appendix, Table A2). 
Therefore, the k-means cluster analysis was conducted on the first 
two components. The four clusters illustrate fairly clear climate 
zones (Fig. 2A, Table 2): (1) low winter temperatures and low 
precipitation in the interior north-west of the escarpment, (2) high 
temperatures overall and high precipitation along the eastern coast 
and north-east, (3) milder temperatures and high precipitation 
south along the coast and east of the escarpment, (4) high summer 
temperatures and low precipitation in the north and west.

The first four components of the land use PCA represent more 
than 81% of the variation (Appendix, Table A3) and were used 
for k-means clustering. These clusters appear more geographically 
scattered compared to the climatic clusters; however, they have clear 
characteristics that were also reflected in the associations among 
variables in the factor loadings (Fig. 2B, Table 3 and Table A3): (1) 
high protected area and untransformed land cover, (2) high road 
density and formal urban build-up indicating major cities like Cape 
Town, Johannesburg and Pretoria, (3) high commercial cultivation 
cover, and (4) high subsistence cultivation and rural build-up.

Table 1. Analysis of variance output from general linear mixed models with dam as random effect, to examine the relationship between CPUE and 
climatic and human-related variables. The chi-square test statistics are presented, together with the level of significance depicted symbolically to 
distinguish between positive and negative linear relationships, where relevant

Total Cyprinids C. carpio C. gariepinus O. mossambicus L. aeneus L. capensis L. umbratus
Monthly temperature (°C) 9.4** 14.8*** n.i. 55.6**** 8.0** 110.9**** 40.6†††† 8.3**
Monthly precipitation (mm) 12.0††† 11.0††† n.i. 91.9†††† 5.5* 72.2†††† n.i. 7.7††
Minimum temperature (°C) 8.1†† n.i. 11.9††† 14.9††† 4.4* 9.9†† 36.2†††† n.i.
Maximum temperature (°C) n.i. n.i. n.i. 16.6**** 7.1** 24.8†††† 8.9†† 17.6††††
Annual precipitation (mm) n.i. n.i. n.i. n.i. 4.2* 20.3†††† 17.7†††† 15.4†††
Protected area (%) n.i. n.i. n.i. n.i. 6.1* n.i. n.i. n.i.
Commercial cultivation (%) n.i. n.i. n.i. n.i. n.i. 6.9** n.i. 14.9***
Formal urban (%) n.i. 3.9† n.i. n.i. 9.5** n.i. n.i. n.i.
Rural urban (%) n.i. 4.5† n.i. 10.4†† n.i n.i n.i. n.i.
Road density (km∙km−2) n.i. n.i n.i. 4.8† 9.6†† n.i. n.i. n.i.
Dam identity 1 530.1**** 2 008.9**** 976.66**** 1 183.7**** 1 226.6**** 960.18**** 708.7**** 1 969.0****

Positive effects: **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05; Negative effects: †††† p < 0.0001; ††† p < 0.001; †† p < 0.01; † p < 0.05;  
n.i. = Not included in model with best fit 
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Table 2. The mean and standard deviation of climatic variables in each of the four climatic k-means clusters obtained from the first two 
components of a PCA 

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Annual mean temperature (°C) 15.6 ± 1.1 20.4 ± 1.4 16.2 ± 1.1 19.2 ± 1.4

Minimum temperature (°C) -0.4 ± 2.1 10.0 ± 2.3 5.1 ± 2.7 4.1 ± 2.0

Maximum temperature (°C) 29.8 ± 1.6 30.2 ± 1.4 26.8 ± 1.6 32.6 ± 1.7

Annual precipitation (mm) 476.8 ± 163.5 925.5 ± 164.6 717.1 ± 137.8 493.4 ± 153.1

Figure 2. Principal component analyses and k-means cluster analyses produced groups of dams with (A) shared climatic characteristics 
summarised in Table 2 and (B) shared human-related characteristics summarised in Table 3 

Table 3. The mean and standard deviation of percentage coverage of land use and protected area and road density, in each of the four land use 
k-means clusters obtained from the first four components of a PCA

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Protected area (%) 12.0 ± 20.0 3.1 ± 5.6 3.4 ± 6.0 3.5 ± 11.4

Natural (%) 80.2 ± 14.3 38.6 ± 11.4 46.7 ± 16.1 61.1 ± 13.1

Commercial cultivation (%) 5.2 ± 5.9 4.2 ± 3.2 25.8 ± 18.2 1.9 ± 3.3

Subsistence cultivation (%) 0.6 ± 1.8 0.04 ± 0.1 0.3 ± 1.0 12.8 ± 8.7

Formal urban build-up (%) 0.8 ± 2.2 25.2 ± 9.8 2.0 ± 3.2 0.5 ± 1.1

Rural build-up (%) 1.0 ± 2.5 0.01 ± 0.01 1.0 ± 2.8 15.3 ± 10.7

Road density (km∙km−2) 2.7 ± 1.0 7.4 ± 3.0 3.6 ± 1.2 3.5 ± 1.3
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Comparison with land use in primary catchments

Catchments C, D, E, G, H, J, K, L, M, N, P and Q were covered 
by less than 1% of subsistence cultivation and rural build-up  
(Fig. 3, Appendix: Table A4). Only catchments G, K, M, R and 
U were covered by more than 1% cover of formal urban build-
up (Fig. 3, Table A4). Commercial agriculture was present in 
all catchments (minimum 1.36 % cover, Fig. 3, Table A4). Land 
use cover in the 5 km zone around dams varied widely for all 
catchments (Fig. 3). Where a Wilcoxon rank sum test was applied 
this variation was significantly different from the land cover in the 
whole catchments (Fig. 3, Table A4).

DISCUSSION

A South African inland fisheries policy and related adaptive 
management objectives will depend on a reliable long-term 
supply of social-ecological data covering fisheries at a broad 
geographic scale, which would require developing a sustainable 
data collection programme (Britz et al., 2015; Tapela et al., 2015; 
Lynch et al., 2016; Weyl et al., 2021). The current study explored 
the use of easily obtainable existing data from dams across South 
Africa to systematically plan research and monitoring, following 
similar approaches demonstrated in previous global-scale studies 
(Lorenzen et al., 2016; Deines et al., 2017; Kao et al., 2020). Based 
on available fishery-independent gillnet data and GIS climatic 
and land use data, the study revealed the variation in fish CPUE, 
climate and land use among dams across South Africa, as well 
as data deficiencies where increased research is urgently needed.  

The findings could contribute to prioritisation of fisheries for further 
intensive research to meet policy knowledge requirements and 
initialise a long-term monitoring programme (Weyl et al., 2020).

Fishery-independent gillnet CPUE was generally found to 
vary with monthly temperature and precipitation, likely due 
to seasonal variation in fish abundance and catchability, which 
should be taken into account in future fishery-independent 
surveys (Pope and Willis, 1996). Further, variation in CPUE 
indicates the climatic associations of species distributions, e.g., O. 
mossambicus and C. gariepinus in warmer climates and L. aeneus 
and L. capensis in cooler climates (Appendix: Fig. A1). Long-
term monitoring could reveal negative or positive responses to 
global warming, depending on precipitation patterns and species’ 
thermal tolerances (Dallas and Rivers-Moore, 2014; Paukert et al., 
2017; Jackson et al., 2020; Kao et al., 2020). Although dam surface 
area is likely to be important in practice, e.g., due to variation 
in total fish population size, dam area was not included in any 
models and is likely unimportant when selecting dams for a long-
term monitoring programme. CPUE was generally weakly related 
to protected area, road density and human land use. Possible 
reasons are that gillnet-sampled dams are generally not associated 
with high values of human land use (more on this later), and that 
the effects may be positive or negative depending on the dam and 
therefore only detectable over long-term sampling (Camp et al., 
2020; Kao et al., 2020). Other ecological community measures 
may also be better indicators of human impacts (e.g., functional 
diversity: Jackson et al., 2020).

Figure 3. Violin and point density plots show the variation among dams in terms of percent coverage in the 5 km zone around each dam in 
commercial cultivation, subsistence cultivation, formal urban build-up and rural build-up, grouped by primary catchment indicated by standard 
alphabetic codes. Crosses are the percent coverage of the land use type in each catchment. Asterisks indicate Holm-corrected p values from 
Wilcoxon rank sum tests indicating that land use around dams are significantly different from percentage cover in the whole catchment: * < 0.05, 
** < 0.001, *** < 0.001, **** < 0.0001. Where asterisks are absent, data were too few for a test.
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Despite ecologically meaningful relationships between CPUE 
and monthly and annual climate, the current FIS gillnet dataset is 
insufficient to generalise to unsampled dams and inform a model-
based survey design. All significant relationships with CPUE were 
weak compared to the large unexplained variation among dams 
(Table 1), and there are too few data to test possible overfitting. 
Additionally, high uncertainty exists for many of the CPUE 
estimates, possibly due to insufficient repeated samples or stations 
(e.g. Tyefu Dam with only one sample: Appendix, Table A1),  
or insufficient coverage of the climatic range relevant to the 
species (e.g. O. mossambicus, Table A1, Fig. A1). Other options 
for planning large-scale monitoring include random stratified site 
selection, and using statistical methods like integrated assessment 
modelling to combine data from different sources, e.g., combining 
FIS and fishery-dependent survey (FDS) data (Lorenzen et al., 
2016; Deines et al., 2017; Kao et al., 2020). Additionally, FDS data 
like records from recreational or subsistence fishing may be better 
for monitoring species that are not sampled well with gillnets, like 
common carp Cyprinus carpio and largemouth bass Micropterus 
salmoides (Winker, 2010; McCafferty, 2012).

The large-scale classification approach may be useful in the 
absence of, or during the early development stages of, a long-term 
fishery monitoring dataset, by revealing high-value or high-risk 
dams to prioritise for intensive data collection. The current study 
revealed groups of dams with shared climatic characteristics that 
seem to associate with certain primary catchments due to the 
strong effect of the escarpment (Figs 1 and 2A). Although the 
gillnet models cannot generalise CPUE estimates to unsampled 
dams, these climate clusters roughly indicate dams where certain 
fish species could thrive, or dams where fish populations should 
be monitored for vulnerability to climate change (Britz et al., 2015; 
Jackson et al., 2020; Kao et al., 2020). Dominant species’ CPUE 
estimates broadly match the climate clusters, with comparatively 
higher CPUE for L. aeneus and L. capensis associated with the 
relatively cooler Cluster 1, whereas O. mossambicus are largely 
present in Cluster 4 where maximum temperature is higher 
(Table 2, Fig. 2A and Appendix: Fig. A1). Dams in Cluster 2 (high 
temperature and high rainfall) are currently represented by only 
three dams with gillnet data, which could bias predictions of fish 
species distributions.

Groups of dams with shared human-related characteristics are 
geographically more scattered (Fig. 2B); however, they have 
very distinct characteristics, signifying (1) dams in remote 
untransformed and protected areas, (2) dams close to towns 
and cities, (3) dams surrounded by commercial cultivation, and 
(4) dams close to rural communities depending on subsistence 
cultivation (Table 3). Clusters 1 and 4 may be suitable targets 
for recreational fishery management and small-scale fishery 
development, respectively, depending on the population size of 
the dominant fish species (Weyl et al., 2007). Of the 44 gillnet-
sampled dams, 32 are associated with Cluster 1, and dams 
characterised by more substantial transformed land cover are 
currently very poorly represented. Of the 6 gillnet-sampled dams 
associated with Cluster 4, only Dimbaza dam is estimated to have 
a fairly high L. umbratus CPUE (Appendix, Table A1). More 
fishery data is needed from dams associated with subsistence 
communities through additional gillnet samples, or by obtaining 
catch size records from the local fishers (see e.g. Appendix 1 in 
Tapela et al., 2015).

The current study focused on a 5 km zone around each individual 
dam to better represent access. However, the influence of human 
activities and climate on waterbodies is often examined at a 
catchment level, as dam-specific data are often scarce, and aquatic 
ecosystems are influenced by human activities and climate in 
whole river drainage basins (Jooste et al., 2014; Jackson et al., 

2020; Kao et al., 2020). The South African primary catchments 
have distinct combinations of human land use cover generally 
indicating the types of communities and dams that are present 
(Fig. 3) and suggesting that primary catchments might be useful 
units for organising sustainable management (Walmsley, 2002). 
However, as shown in the current study, a general assessment of 
the catchment might not reflect conditions specific to dams as 
there is substantial variation among dams within catchments in 
terms of land use cover in the 5 km zone.

Although the gillnet data were not sufficient to study the effect of 
human activities, and human-related and climate characteristics 
were not combined to classify dams, the influence of human 
activities and environmental variation may be synergistic 
(Paukert et al., 2017; Jackson et al., 2020; Kao et al., 2020). For 
example, clean water supply could increase the resilience of 
aquatic ecosystems to a changing climate and increased human 
activities (Dallas and Rivers-Moore, 2014; Kao et al., 2020). 
However, precipitation is projected to decrease, especially in 
the southwestern winter rainfall region of South Africa, with a 
general increase in rainfall intensity and extreme flood or drought 
events compounding the stresses from agricultural intensification 
and urban expansion on aquatic ecosystems (Dallas and Rivers-
Moore et al., 2014; Archer et al., 2018; Jackson et al., 2020). Dams 
are increasingly important as refuges for fish during droughts, 
while competing with human water consumption (Beatty et 
al., 2017). Sustainable economic development is much needed 
in socioeconomically underdeveloped areas, and could ensure 
increased water use efficiency and quality, and sanitation access 
to reduce pollution (Kao et al., 2020). However, unsustainable 
human land use intensification or poorly planned development 
could affect aquatic ecosystems through increased erosion, 
sedimentation, eutrophication and heavy metal pollution, and 
decrease fish population resilience and fishery product quality and 
safety, possibly further marginalising those most dependent on 
the fishery (Papu-Zamxaka et al., 2010; Jooste et al., 2014; Jackson 
et al., 2020; Kao et al., 2020). This further highlights the need to 
study the social-ecological dynamics of fisheries and incorporate 
human activity, social and economic data into fishery survey and 
monitoring programmes (Beard et al., 2011; Hara and Backeberg, 
2014; Tapela et al., 2015).

CONCLUSIONS

The current study demonstrates how available data, like the FIS 
gillnet data and GIS data evaluated here, could be used to streamline 
the development of a sustainable data collection programme for 
a South African inland fisheries policy, while also revealing data 
gaps where increased research should be focused. Broad-scale 
classification of dams by climate and land use associations is a 
method for rapidly prioritising dams for further dam-specific 
data collection. Dam-specific research should include assessing 
fishery potential and current fishing activity, and identifying 
dams that are unsuitable for fishing (e.g. polluted dams), thereby 
further refining the selection of dams for fishery management and 
monitoring (Papu-Zamxaka et al., 2010; Jooste et al., 2014; Weyl 
et al. 2021). The classification analysis identified dams that are 
likely important for small-scale and subsistence fisheries, which 
require increased research effort (Hara and Backeberg, 2014; 
Tapela et al., 2015). However, dam-specific research may identify 
many dams with mixed recreational, subsistence and small-scale 
fisheries that require support for multiple stakeholders (Smith et 
al., 2005; Ellender et al., 2009; Weyl et al. 2021).

Before the FIS gillnet dataset would be useful for modelling 
general patterns or model-based sampling design, it should be 
expanded with recurrent samples from dams representing the 
full range of climate and land use characteristics indicated by 
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the classification analyses. Further, the predictive capability of 
models could be improved by consistently recording additional 
variables that influence CPUE, other than seasonal climate. For 
example, fish abundance could be affected by fishing pressure, 
whereas catchability could be affected by turbidity, water 
temperature and time of day (Vašek et al., 2009; Latour, 2016; 
Weyl et al., 2021). Other possible methods to obtain CPUE data 
should also be examined, including random stratified survey 
design and combining catch data from various sources, including 
fishery-dependent data (Paukert et al., 2017; Camp et al., 2020). 
Moreover, long-term monitoring can be iteratively improved by 
periodically revising the survey design and sampling methods 
according to data insufficiencies revealed by models based on 
previously collected data (Guisan et al., 2006). Therefore, the cost 
and effort spent to develop and maintain a long-term monitoring 
programme will return increasingly valuable data that are 
essential for adaptive management responses to environmental 
and socioeconomic change.
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Figure A1. The location of the dams listed in Table A1, with CPUE (kg∙month−1∙sampling station−1) estimates indicated and primary catchments 
delineated. The CPUE colour scales are on the logarithmic scale to better distinguish visually, with black indicating zero
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Table A1. The predicted catch per unit effort (CPUE, kg∙month−1∙sampling station−1) from each dam derived from models presented in Table 1 in 
the main text, where monthly temperature and precipitation were kept constant (at mean value across dataset). Lower and upper bounds of the 
95% confidence intervals are in brackets

Catchment  
and dam

Total Native 
cyprinids

Cyprinus 
carpio

Clarias 
gariepinus

Oreochromis 
mossambicus

Labeobarbus 
aeneus

Labeo 
capensis

Labeo 
umbratus

A Bospoort 4.05
(2.08; 7.88)

0.00 
(0.00; 0.00)

0.69
(0.22; 2.15)

1.39 
(0.48; 4.00)

1.47 
(0.81; 2.64)

0.00 
(0.00; 3.99)

0.00 
(0.00; 0.48)

0.00 
(0.00; > 95.00)

A Koster 8.50
(4.37; 16.54)

0.70 
(0.24; 1.98)

0.21
(0.05; 0.98)

6.48 
(3.06; 13.71)

1.12 
(0.57; 2.20)

0.00 
(0.00; 0.40)

0.00 
(0.00; 0.30)

0.00 
(0.00; > 95.00)

A Lindleyspoort 6.83
(3.87; 12.05)

1.46 
(0.67; 3.19)

0.10 
(0.02; 0.46)

5.09 
(2.60; 9.96)

0.25 
(0.11; 0.59)

0.00 
(0.00; 0.69)

0.00 
(0.00; 0.27)

0.00 
(0.00; > 95.00)

A Madikwe 11.71
(6.64; 20.65)

1.05 
(0.46; 2.39)

0.00 
(0.00; 0.60)

9.01 
(5.20; 15.63)

0.20 
(0.08; 0.52)

0.00 
(0.00; 1.82)

0.00 
(0.00; 0.19)

0.00 
(0.00; > 95.00)

A Molatedi 14.51
(8.22; 25.59)

3.37 
(1.75; 6.50)

0.01 
(0.00; 0.11)

5.29 
(3.03; 9.23)

2.76 
(1.95; 3.89)

0.00 
(0.00; 2.09)

0.00
(0.00; 0.20)

0.00 
(0.00; > 95.00)

A Ngotwane 14.21
(8.06; 25.07)

2.27 
(1.09; 4.72)

0.00 
(0.00; 0.59)

9.45 
(5.53; 16.14)

0.00 
(0.00; 13.82)

0.00 
(0.00; 0.05)

0.00 
(0.00; 0.02)

0.00 
(0.00; 33.47)

A Roodekopjes 14.08
(7.98; 24.83)

6.13 
(3.34; 11.27)

0.29 
(0.09; 0.88)

4.83 
(2.63; 8.86)

1.75 
(1.16; 2.64)

0.00 
(0.00; 1.30)

0.00 
(0.00; 0.23)

0.00 
(0.00; 94.12)

A Vaalkop 29.39
(16.66; 51.84)

11.93
(6.74; 21.13)

0.00 
(0.00; 0.57)

10.12 
(5.91; 17.36)

5.41 
(4.02; 7.28)

0.00 
(0.00; 3.14)

0.00 
(0.00; 0.31)

0.00 
(0.00; > 95.00)

B Flag Boshielo 3.15
(2.56; 3.88)

1.98 
(1.53; 2.57)

0.01 
(0.01; 0.03)

0.15 
(0.09; 0.25)

0.63 
(0.50; 0.78)

0.00 
(0.00; 0.00)

0.00 
(0.00; 0.00)

0.00 
(0.00; 0.64)

B Loskop 12.50
(6.64; 23.54)

2.94 
(1.56; 5.53)

0.00 
(0.00; 0.30)

1.00 
(0.51; 1.95)

10.33 
(8.57; 12.45)

0.00 
(0.00; 0.08)

0.00 
(0.00; 0.01)

0.00 
(0.00; 12.47)

C Allemanskraal 7.72
(3.74; 15.97)

4.75
(2.23; 10.10)

0.41 
(0.13; 1.28)

2.67 
(1.13; 6.34)

0.00 
(0.00; 33.24)

1.16 
(0.52; 2.61)

0.92 
(0.44; 1.91)

2.40 
(1.27; 4.54)

C Bloemhoek 42.66
(20.63; 88.23)

36.92 
(18.59; 73.35)

0.43 
(0.09; 2.13)

5.35 
(1.86; 15.40)

0.00 
(0.00; > 33.30)

0.63 
(0.18; 2.23)

11.84 
(6.60; 21.25)

25.43 
(15.65; 41.33)

C Bloemhoff 15.12
(7.31; 31.27)

2.16
(0.94; 5.00)

6.13 
(3.43; 10.98)

5.38 
(2.78; 10.43)

0.00 
(0.00; 26.52)

0.78 
(0.36; 1.69)

1.11 
(0.54; 2.27)

0.48 
(0.18; 1.28)

C Jimmy Roos 56.17
(27.77; 113.61)

51.02
(27.23; 95.59)

0.00 
(0.00; 1.63)

7.12 
(2.93; 17.31)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 0.06)

0.00 
(0.00; 0.02)

53.02 
(37.02; 75.93)

C Kalkfontein 31.89
(15.42; 65.94)

27.67 
(15.76; 48.58)

1.05 
(0.42; 2.59)

2.07 
(0.98; 4.39)

0.00 
(0.00; > 33.30)

2.64 
(1.57; 4.44)

4.44 
(2.56; 7.67)

15.00 
(10.83; 20.76)

C Koppies 53.40
(25.82; 110.42)

45.30 
(26.20; 78.34)

0.78 
(0.29; 2.07)

17.97 
(9.83; 32.84)

0.00 
(0.00; > 33.30)

43.56 
(27.45; 69.12)

2.40 
(1.31; 4.40)

27.78 
(19.98; 38.61)

C Krugersdrift 15.68
(9.40; 26.13)

10.47
(6.56; 16.72)

1.21 
(0.65; 2.27)

2.85 
(1.66; 4.90)

0.00 
(0.00; 1.71)

0.60 
(0.34; 1.05)

1.77 
(1.11; 2.82)

8.27 
(6.15; 11.11)

C Metsi Matso 1.64
(0.81; 3.32)

0.00 
(0.00; 0.01)

0.00 
(0.00; 2.70)

0.00 
(0.00; 7.69)

0.79 
(0.34; 1.83)

0.00 
(0.00; 1.75)

0.00 
(0.00; 0.05)

0.00 
(0.00; > 95.00)

C Mockes 16.03
(7.93; 32.43)

3.07
(1.18; 7.93)

0.00 
(0.00; 1.86)

11.63 
(5.45; 24.81)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 0.11)

1.07 
(0.43; 2.69)

2.25 
(0.90; 5.58)

C Moutloasi 12.59
(7.56; 20.99)

7.60
(4.29; 13.45)

0.54 
(0.21; 1.41)

3.63 
(1.77; 7.44)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 0.02)

5.51
(3.57; 8.50)

2.59 
(1.44; 4.64)

C Rustfontein 15.28
(9.17; 25.48)

9.09
(5.61; 14.73)

1.28 
(0.69; 2.37)

4.14 
(2.45; 7.02)

0.00 
(0.00; > 33.30)

2.25 
(1.41; 3.59)

0.97 
(0.58; 1.64)

5.48 
(3.87; 7.76)

C Serfontein 3.88
(1.92; 7.86)

0.00 
(0.00; 0.00)

0.00 
(0.00; 2.11)

4.65 
(1.61; 13.42)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 0.17)

0.00 
(0.00; 0.04)

0.00 
(0.00; 34.77)

C Sterkfontein 18.17
(10.90; 30.29)

16.42
(10.28; 26.23)

0.11 
(0.04; 0.35)

6.50 
(3.26; 12.99)

0.00 
(0.00; 9.05)

99.70 
(68.95; 144.16)

2.22 
(1.45; 3.39)

2.91 
(1.71; 4.94)

C Taung 15.22
(7.96; 29.10)

11.08 
(5.83; 21.05)

0.20 
(0.05; 0.84)

3.39 
(1.57; 7.32)

0.00 
(0.00; > 33.30)

6.37 
(3.84; 10.57)

0.98 
(0.48; 2.04)

0.27 
(0.08; 0.92)

C Tierpoort 43.33
(21.42; 87.64)

14.97
(7.09; 31.58)

9.50 
(4.65; 19.40)

16.61 
(8.49; 32.50)

0.00 
(0.00; 0.07)

3.34 
(1.64; 6.83)

0.70 
(0.26; 1.88)

9.34 
(5.23; 16.68)

D Armenia 74.41
(36.79; 150.51)

72.03
(39.36; 131.81)

3.96 
(1.63; 9.63)

3.92 
(1.26; 12.15)

0.00 
(0.00; > 33.30)

91.63
(57.83; 145.19)

3.49 
(1.71; 7.10)

7.11 
(3.55; 14.26)

D Egmont 16.30
(9.78; 27.18)

15.05
(9.32; 24.30)

0.55 
(0.24; 1.27)

2.51 
(1.25; 5.01)

0.00 
(0.00; > 33.30)

13.11 
(8.95; 19.21)

1.07 
(0.62; 1.85)

2.35 
(1.41; 3.94)

D Gariep 16.81
(12.13; 23.29)

14.62 
(11.17; 19.14)

0.53 
(0.34; 0.82)

1.38 
(0.93; 2.03)

0.00 
(0.00; 5.29)

5.84 
(4.72; 7.23)

3.96 
(3.20; 4.91)

0.17 
(0.10; 0.28)
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Table A1 Continued. The predicted catch per unit effort (CPUE, kg∙month−1∙sampling station−1) from each dam derived from models presented 
in Table 1 in the main text, where monthly temperature and precipitation were kept constant (at mean value across dataset). Lower and upper 
bounds of the 95% confidence intervals are in brackets

Catchment  
and dam

Total Native 
cyprinids

Cyprinus 
carpio

Clarias 
gariepinus

Oreochromis 
mossambicus

Labeobarbus 
aeneus

Labeo 
capensis

Labeo 
umbratus

D Knellpoort 15.65
(7.57; 32.37)

12.76
(6.67; 24.43)

1.39 
(0.60; 3.22)

0.73 
(0.23; 2.32)

0.00 
(0.00; > 33.30)

9.67 
(5.83; 16.05)

2.56 
(1.41; 4.64)

2.59 
(1.41; 4.77)

D Lotlamoreng 1.70
(0.89; 3.25)

0.00 
(0.00; 0.00)

0.84 
(0.23; 3.04)

0.09 
(0.01;1.14)

0.55 
(0.20; 1.48)

0.00 
(0.00; 13.52)

0.00 
(0.00; 0.74)

0.00 
(0.00; > 95.00)

D Welbedacht 6.09
(2.95; 12.60)

1.64 
(0.55; 4.86)

0.90 
(0.24; 3.41)

3.45 
(1.13; 10.50)

0.00 
(0.00; > 33.30)

0.20 
(0.05; 0.85)

0.58 
(0.20; 1.68)

1.00 
(0.29; 3.44)

K Binfield 7.21
(3.40; 15.28)

0.00 
(0.00; 0.00)

0.21 
(0.06; 0.73)

0.00 
(0.00; 1.14)

0.00 
(0.00; 0.39)

0.00 
(0.00; 0.02)

0.00 
(0.00; 0.13)

0.00 
(0.00; 2.80)

N Darlington 21.16
(13.07; 34.25)

17.21 
(11.16; 26.54)

0.69 
(0.33; 1.43)

4.38 
(2.67; 7.20)

0.85 
(0.51; 1.41)

0.46 
(0.26; 0.81)

0.83 
(0.50; 1.37)

14.39 
(11.19; 18.51)

P Glen Melville 3.44
(1.80; 6.58)

1.27 
(0.48; 3.37)

0.00 
(0.00; 5.37)

1.91 
(0.67; 5.44)

0.00 
(0.00; > 33.30)

0.05 
(0.01; 0.22)

0.00 
(0.00; 0.06)

1.12 
(0.43; 2.90)

Q Grassridge 7.21
(3.40; 15.27)

6.99
(3.10; 15.79)

0.00 
(0.00; 0.33)

0.02 
(0.00; 0.53)

0.00 
(0.00; > 33.30)

0.66 
(0.27; 1.66)

4.55 
(2.50; 8.28)

0.71 
(0.24; 2.11)

Q Mangazana 21.20
(10.00; 44.91)

11.18
(5.01; 24.92)

0.00 
(0.00; 17.34)

0.00 
(0.00; 2.17)

11.40 
(7.98; 16.29)

0.00 
(0.00; 0.79)

0.00 
(0.00; 0.00)

10.56 
(6.10; 18.26)

Q Pikoli 22.57
(11.99; 42.48)

22.63
(12.01; 42.64)

0.32 
(0.07; 1.41)

0.00 
(0.00; 1.31)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 0.49)

0.00 
(0.00; 0.00)

20.93 
(13.93; 31.43)

Q Tyefu 15.12
(4.51; 50.62)

17.10
(3.61; 81.00)

0.00 
(0.00; >19.40)

0.00 
(0.00; >33.00)

0.00 
(0.00; > 33.30)

0.00 
(0.00; >145.20)

0.00 
(0.00; 0.00)

18.18 
(5.30; 62.33)

R Dimbaza 31.96
(10.49; 97.37)

36.76
(12.04; 112.29)

0.00 
(0.00; > 19.40)

0.00 
(0.00; 3.99)

0.00 
(0.00; 0.03)

0.00 
(0.00; 85.50)

0.00 
(0.00; 0.07)

36.42 
(18.00; 73.67)

R Laing 5.31
(2.82; 10.00)

5.34 
(2.60; 10.98)

0.00 
(0.00; 2.81)

0.00 
(0.00; 3.42)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 4.95)

0.00 
(0.00; 0.00)

5.65 
(3.33; 9.58)

S Wriggleswade 3.10
(1.81; 5.31)

2.13
(1.17; 3.86)

0.43 
(0.20; 0.93)

0.00 
(0.00; 0.06)

0.00 
(0.00; > 33.30)

1.54 
(0.98; 2.43)

0.00 
(0.00; 0.03)

0.00 
(0.00; 0.84)

S Xonxa 6.00
(3.57; 10.08)

4.76 
(2.61; 8.71)

0.57 
(0.23; 1.41)

0.87 
(0.33; 2.26)

0.00 
(0.00; > 33.30)

4.19 
(2.61; 6.73)

0.00 
(0.00; 0.00)

0.00 
(0.00; 2.04)

T Umtata 0.94
(0.41; 2.18)

0.00 
(0.00; 0.02)

0.69 
(0.14; 3.32)

0.00 
(0.00; 17.52)

0.00 
(0.00; > 33.30)

0.00 
(0.00; 47.10)

0.00 
(0.00; 0.34)

0.00 
(0.00; > 95.00)

W Pongolapoort 0.1
(0.05; 0.19)

0.00 
(0.00; 0.00)

0.00 
(0.00; 0.60)

0.00 
(0.00; 0.12)

0.00 
(0.00; 0.11)

0.00 
(0.00; 0.11)

0.00 
(0.00; 0.00)

0.00 
(0.00; > 95.00)

Table A2. Factor loadings and proportion of variance explained of a principal component analysis (PCA) of four climatic variables spatially 
associated with 442 dams across South Africa

Component 1 Component 2 Component 3 Component 4

Annual mean temperature (°C) 0.683 0.247 0.686

Minimum temperature of coldest month (°C) 0.602 −0.322 0.513 −0.520

Maximum temperature of warmest month (°C) 0.287 0.699 −0.414 −0.508

Annual precipitation (mm) 0.297 −0.589 −0.751

Proportion of variance 0.483 0.383 0.132 0.002

Cumulative proportion 0.483 0.866 0.998 1.000

Table A3. Factor loadings and proportion of explained variance of a PCA of variation among 442 dams (in a 5 km wide buffer zone around each 
dam) in percentage cover of protected area, natural (untransformed) land, commercial and subsistence cultivation, and formal and rural build-up, 
and road density as length per unit area

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7

Protected area (%) 0.314 0.134 0.321 0.838 0.249 0.110

Natural (%) 0.493 0.258 −0.450 0.357 0.527 −0.274

Commercial cultivation (%) −0.303 0.285 −0.649 0.203 0.372 0.274 −0.389

Subsistence cultivation (%) −0.667 0.620 −0.389 −0.130

Formal urban build-up (%) −0.489 0.573 −0.645

Rural build-up (%) −0.666 −0.115 0.215 −0.395 0.566 −0.142

Road density (km∙km−2) −0.572 0.257 0.355 0.397 0.561

Proportion of variance 0.302 0.224 0.167 0.122 0.083 0.068 0.034

Cumulative proportion 0.302 0.527 0.693 0.816 0.898 0.966 1.000
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Table A4. Human-related land cover within a 5 km buffer zone around dams were compared to the land cover in the primary catchment areas 
(river basins). Number of dams (n) and percentage coverage of four land use types in each catchment are shown, together with the corresponding 
mean and standard deviation (SD) of percentage land cover around dams, and the Holm-corrected p values adjusted for multiple Wilcoxon rank 
sum tests. Where fewer than 5 non-zero values were available, ‘n.a.’ indicates that the rank sum test was not applied.

Basin n Commercial cultivation Subsistence cultivation Formal urban build-up Rural build-up

Whole Mean ± SD p Whole Mean ± SD P Whole Mean ± SD p Whole Mean ± SD P

A 48 6.19 5.65 ± 5.63 <0.0001 2.33 2.10 ± 4.73 <0.0001 0.86 1.38 ± 3.44 <0.0001 2.13 3.62 ± 7.04 <0.0001

B 42 12.67 12.06 ± 13.70 <0.0001 2.98 1.34 ± 2.99 <0.0001 0.25 0.88 ± 2.08 <0.0001 3.39 2.26 ± 3.97 <0.0001

C 68 28.73 25.05 ± 19.56 <0.0001 0.35 0.55 ± 2.42 <0.0001 0.53 5.05 ± 10.19 <0.0001 0.14 0.23 ± 1.18 <0.0001

D 56 2.44 8.14 ± 14.57 <0.0001 0.40 1.24 ± 5.58 n.a. 0.03 0.39 ± 1.55 <0.0001 0.19 0.29 ± 1.42 n.a.

E 7 4.11 16.02 ± 13.91 0.0414 0.01 0.00 ± 0.00 n.a. 0.02 0.26 ± 0.53 n.a. 0.00 0.00 ± 0.00 n.a.

G 32 41.76 13.46 ± 16.98 <0.0001 0.00 0.00 ± 0.00 n.a. 2.04 5.55 ± 8.37 <0.0001 0.00 0.00 ± 0.00 n.a.

H 18 30.58 13.03 ± 8.22 0.0001 0.00 0.00 ± 0.00 n.a. 0.29 0.66 ± 1.22 0.0007 0.00 0.00 ± 0.00 n.a.

J 14 3.72 1.79 ± 2.23 0.0013 0.00 0.00 ± 0.00 n.a. 0.04 0.29 ± 0.61 n.a. 0.00 0.00 ± 0.00 n.a.

K 17 15.15 12.44 ± 14.37 0.0002 0.02 0.002 ± 0.01 n.a. 1.24 3.11 ± 3.29 0.0013 0.28 0.00 ± 0.00 n.a.

L 10 1.36 1.79 ± 2.61 0.0294 0.00 0.00 ± 0.00 n.a. 0.03 0.002 ± 0.01 n.a. 0.05 0.02 ± 0.05 n.a.

M 4 4.46 5.07 ± 4.48 n.a. 0.00 0.00 ± 0.00 n.a. 5.69 0.02 ± 0.03 n.a. 0.01 0.00 ± 0.00 n.a.

N 11 2.80 3.23 ± 1.95 0.0294 0.00 0.00 ± 0.00 n.a. 0.05 0.18 ± 0.60 n.a. 0.01 0.00 ± 0.00 n.a.

P 6 14.54 5.03 ± 5.60 0.0414 0.08 0.00 ± 0.00 n.a. 0.35 0.05 ± 0.11 n.a. 0.07 0.03 ± 0.04 n.a.

Q 11 2.46 3.29 ± 1.96 0.0078 0.22 1.40 ± 2.05 0.0111 0.06 0.00 ± 0.00 n.a. 0.18 1.85 ± 2.69 n.a.

R 9 3.16 1.46 ± 2.75 n.a. 7.45 10.12 ± 6.06 0.0111 1.15 1.89 ± 3.29 n.a. 4.50 7.59 ± 2.88 0.0177

S 12 2.53 2.07 ± 3.40 0.0137 7.04 11.27 ± 9.71 0.0029 0.13 0.64 ± 1.49 n.a. 3.88 5.63 ± 5.22 0.0076

T 8 4.49 2.85 ± 5.02 0.0414 12.99 10.85 ± 9.00 0.0111 0.20 0.26 ± 0.73 n.a. 9.74 10.65 ± 7.13 0.0177

U 14 16.69 18.76 ± 19.65 0.0013 2.59 2.02 ± 2.33 0.0055 2.71 2.17 ± 2.19 0.0033 9.78 16.43 ± 14.11 0.0065

V 10 8.57 15.57 ± 9.26 0.0137 5.05 2.88 ± 3.81 0.0078 0.35 2.00 ± 4.52 0.0059 4.56 2.88 ± 3.79 0.0177

W 33 5.38 12.11 ± 12.49 <0.0001 6.42 1.34 ± 3.41 <0.0001 0.19 1.34 ± 2.10 <0.0001 6.11 4.85 ± 5.35 <0.0001

X 12 7.10 10.04 ± 9.61 0.0044 1.10 0.79 ± 2.60 n.a. 0.29 0.42 ± 0.84 0.0044 2.50 1.80 ± 3.93 0.0088


