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ABSTRACT
Trophic Level Index (TLI) is o�en used to assess the general eutrophication state of inland lakes in water science, 
technology, and engineering. In this paper, a data-driven inland-lake eutrophication assessment method was proposed 
by using an arti�cial neural network (ANN) to build relationships from remote sensing data and in-situ TLI sampling. In 
order to train the net, Moderate Resolution Imaging Spectroradiometer (MODIS, which has a revisit cycle of 4 times per 
day) data were combined with in-situ observations. Results demonstrate that the TLI obtained directly from remote-sensing 
images using the data-driven method is more accurate than the TLI calculated from the water quality factors retrieved 
from remote-sensing images using a multivariate regression method. Spatially continuous and quasi-real time results were 
retrieved by using MODIS data. �is method provides an e�cient way to map the TLI spatial distribution in inland lakes, 
and provides a scheme for increased automation in TLI estimation.
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INTRODUCTION

Some countries use Trophic State Index (TSI) to assess the 
trophic condition of a lake and associated changes (Carlson, 
1977; Carlson and Simpson, 1996). Trophic Level Index (TLI) 
is another approach that was developed by the Ministry for 
the Environment of New Zealand (Burns and Bryers, 2000; 
Verburg et al., 2010). TLI is recommended by the China 
National Environmental Monitoring Centre for measuring 
inland lakes’ eutrophication levels (CNEMC, 2009). Currently, 
TLI can either be calculated from water samples or from in-situ 
hyper-spectral data measurements (Li et al., 2006), and is usu-
ally calculated by interpolating all of these observation points. 
However, as demonstrated by Kuster (2004), nutrients in inland 
lakes have various shapes and complex spatial distributions. 
Some of the nutrient clusters even have a strip shape less than 
30 m wide. Furthermore, the complicated non-linear relation 
is simpli�ed as a linear relationship (Jiang et al., 2013). All this 
complexity of hydrology makes the retrieval of TLI by interpo-
lation of only some ground observation points unreliable. On 
the other hand, to solve the laborious sampling and time-con-
suming chemical analysis problem, Yao used remote-sensing 
techniques that were fast, wide ranging, low-cost, and period 
dynamic (Yao et al., 2009). However, this method still cannot 
satisfy regional monitoring needs. TLI synthesizes many nutri-
tion targets, and the synthetic eutrophication index is com-
puted based on many nutrition targets retrieved from remote-
sensing images. Some previous studies tried to obtain TLI by 
building multivariate regression from remote-sensing data to 
create a eutrophication index combined with in-situ measure-
ments (He et al., 2009). All these studies provide a time-saving 
way of acquiring the spatial distribution of TLI. However, there 

are two de�ciencies in such studies. Firstly, the revisit cycle of 
remote-sensing satellite data used in these studies is usually 
several days, which makes it almost impossible to collect the in-
situ data at exactly the same time. Considering bad weather and 
other imaging conditions, the data were not suitable for daily 
monitoring. Secondly, the regression approach for retrieving 
TLI was a linear retrieval method, but it has been proven that 
a non-linear relationship exists (NSCEP, 1976) between satel-
lite bands and the �ve water quality factors of interest. Studies 
(NSCEP, 1976; Yang et al., 2006) suggest that a non-linear 
model may be better adapted to retrieve results.

To overcome the accuracy and e�ciency problem, we pro-
pose a rapid data-driven method for monitoring the TLI distri-
bution of Chaohu Lake. A data-driven method (Darema, 2004; 
Darema et al., 2005) would be appropriate to rapidly retrieve 
TLI information directly from satellite images (Li, 2007; Ei 
Serafy et al., 2007; Song et al., 2014b). CBERS satellite data were 
substituted by Moderate Resolution Imaging Spectroradiometer 
(MODIS) because the MODIS revisit cycle is 4 times per day 
(Freeborn et al., 2011) and the spectrum covered by the image is 
wider. Multivariate regression (linear analysis) was replaced by 
an arti�cial neural network (non-linear analysis) regression to 
better retrieve TLI. 

�is paper introduces the data acquisition and processing 
procedures and reviews the feasibility of using ANN and MODIS 
to map the TLI distribution. �e results of ANN regression and 
the time-series TLI distribution maps are discussed and pre-
sented, concluding with prospects for future improvement.

MATERIALS AND METHODS

Study area

Chaohu Lake is a typical large, shallow, subtropical lake. With 
a mean water depth of 2.69 m covering an area of 780 km2, the 
lake is located between 30°58´ and 32°06´N and 116°24´ and 
118°00´E. Its northwestern border is less than 10 km away from 
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the capital city of Anhui Province, Hefei, and its eastern bor-
der is very near Chaohu City (Fig. 1). Being one of the drink-
ing water catchment areas for both cities, the water quality of 
Chaohu Lake is of the utmost importance. Some remote-sens-
ing inversion work on water quality has been done in Chaohu 
(Mei et al., 2008b; Xie et al., 2010).

�e lake is managed and monitored by two di�erent 
administrations. Each administration takes responsibility for 6 
observation points. �ese sample points are used to get obser-
vation data on surface water quality every other day from May 
to October and once a week for the rest of the year. �e cur-
rent 12 sampling points are the �nal choice of the Ministry of 
Environmental Protection and the local environmental protec-
tion department, based on rigorous analysis and veri�cation 
synthesized from many di�erent factors, such as lake area, lake 
basin form, condition of recharge, e�uent and water intake, the 
location and scale of sewage disposal facilities, pollutant circu-
lation, and migration and transformation of algae in water. �e 
current 12 sampling points satisfactorily control water quality 
monitoring and veri�cation in Chaohu Lake. At the same time, 
a more homogeneous distribution or more sample sites might 
not lead to better veri�cation; it depends on the representa-
tiveness of the sample sites according to the characteristics of 
the water. Actually, in the early monitoring of Chaohu Lake 
in 2009, the sample sites were homogeneously distribution as 
shown in Fig. 2. 

A nutrient-level distribution for Chaohu Lake was drawn 
based on the sample sites, and the area and distribution of chlo-
rophyll, which is the main indicator of nutrient levels in lake 
water, was computed (Fig. 3). �e central part and north central 
area are known to be consistently eutrophic, and therefore few 
sample sites were chosen in this region. More sample sites will 
be deployed in Chaohu Lake in the future to monitor changes 
in nutrient distribution and improve the accuracy of water 
quality data veri�cation.

To demonstrate the feasibility of our method, high tempo-
ral and spectral resolution MODIS data from April 2 to July 
13, 2013, were acquired. MODIS Surface-Re�ectance Products 
(MOD09) were downloaded from the National Aeronautics 

Figure 1
Location of sampling sites within Chaohu Lake

Figure 2
Satellite image of Chaohu Lake showing the location of sampling sites 

used in 2009

Figure 3
Distribution of chlorophyll a in Chaohu Lake in 2009
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Wj = rij
2 /  ∑ 

j = 1

  
m

  rij
2  (2)

TLIj is the jth composite indicator with the corresponding 
weight Wj. �e rij value given in Table 1 gives the correlation 
coe�cient for the relationship between the reference chlo-
rophyll concentration and each indicator. �e TLI of all the 
observation points was calculated from 5 components includ-
ing chemical oxygen demand (COD), total phosphorus (TP), 
total nitrogen (TN), chlorophyll a (Chl–a), and Secchi depth 
(SD). Formulas for the TLI of each component are given below:

TLI(Chl–a) = 10(2.5 + 1.086 ln(Chl–a)) (3)

TLI(TP) = 10(9.436 + 1.624 ln(TP)) (4)

TLI(TN) = 10(5.453 + 1.694 ln(TN)) (5)

TLI(SD) = 10(5.118 + 1.94 ln(SD))  (6)

TLI(COD) = 10(0.109 + 2.661 ln(COD)) (7)

Equations 3 to 7 are empirical regression equations based 
on a survey of eutrophication levels of more than 20 lakes in 
China (Jin et al., 1990). According to Speci�cations for Lake 
Eutrophication Survey (2nd Edition) (Jin et al., 1990), these 20 
lakes are representative of a range of depths, sizes and meteoro-
logical conditions. For example, the sample includes Aydingkol 
Lake with a depth of less than 1 m, and Nam-Co Lake with 
a depth of 125 m; as well as Tianchi Lake with a surface area 
of less than 10 km2, and Qinghai Lake with a surface area of 
4 500 km2. Climatic conditions represented range from those 
of plain to highland and mountainous regions. Most of these 
lakes were highly eutrophic. �erefore, the method presented is 
reliable in lakes with a moderate to high eutrophication status. 
�e empirical coe�cients can be used in other lakes only a�er 
determining the nutrition composition of a typical lake in the 
region of interest.

�e units for each component are given in Table 1. �e 
score for TN and TP was adjusted in the range from 0 to 100 
according to the international standard (Jin et al., 1990) for lake 
eutrophication levels and was analysed for correlations between 
the index of the eutrophication and water quality parameter. 
Also taken into consideration was that TN and TP is generally 
higher in Chinese lakes relative to those in developed countries. 
Trophic status is categorised using the ∑TLI as follows:
• Oligotrophic: ∑TLI < 30 
• Mesotrophic: 30 ≤ ∑TLI ≤ 50 
• Light eutrophic: 50 < ∑TLI ≤ 60 
• Mid eutrophic: 60 < ∑TLI ≤ 70 
• Hypereutrophic: ∑TLI > 70 

From the de�nition of ∑TLI, it has a linear relationship with the 
natural logarithm value of the �ve indicator values. Both band 
ratio combination methods (Gons et al., 2002; Song et al., 2013), 

and Space Administration (NASA) (Vermote, 2013). MOD09 is 
the Level 2 product automatically generated from the MODIS 
Level 1B land bands intended to estimate the surface spec-
tral re�ectance. Atmospheric e�ects are almost removed in 
MOD09, though there are articles reporting on the de�ciencies 
of MOD09 (Guang et al., 2013).

In-situ samples were obtained from 2 April to 13 July 2013 
with a 7-day interval from April to May and 1-day interval 
from June to July. �e sites were accessed by motor boat and 
water samples were taken from 0.5 m below the water surface 
using plastic samplers. A volume of 1.5 to 3 ℓ water was taken. 
Water quality was also assessed using an EXO2 multifunc-
tional measuring instrument, which was lowered 1–2 cm into 
the water. �e samples were placed in a box �lled with ice and 
stored in the dark for a short period before laboratory analysis. 
All laboratory analyses were done at the local environmental 
monitoring centres. A spectrophotometric method was used 
to determine chlorophyll a according to Wei et al. (2002). A 
dichromate method was used to determine COD according to 
National Standard GB/T11914-89 (Yin, 1989). An ammonium 
molybdate spectrophotometry method was used to determine 
TP according to National Standard GB11893-89 (Yuan and 
Yao, 1989). An alkaline potassium persulfate digestion UV 
spectrophotometric method was used to determine TN accord-
ing to National Standard HJ636-2012 (DLMEMC, 2012). �e 
measured results were returned 2 days a�er the water samples 
were taken to the laboratory. �e Environmental Protection 
Monitoring Station of the Chaohu Management Bureau has 
specialized departments and personnel responsible for daily 
equipment calibration and the manufacturer’s engineers do 
regular equipment calibration. �ree replicate samples were 
collected for each sampling point, and the average for each 
sampling site and time reported. 

Training data selection was based on the following principles:
• Sampling points close to the shore were excluded from the 

dataset. Since the resolutions of MOD09 are 250 m (Band 1 
and Band 2) and 500 m (Band 3 to Band 7), o�-shore water 
will be mixed with coastal water, which will cause spectral 
distortion. 

• Cloud-contaminated pixels are excluded in the MODIS 
cloud mask product (MOD35). 

Pixel values for each sampling point were extracted. Only 
Bands 1 to 5 were used in this study in order to avoid redun-
dancy. Bands 6 and 7 have rarely been reported as being suit-
able for monitoring water. A total of 63 samples of in-situ data 
concurrent with MOD09 were obtained and the dataset was 
randomly divided into 3 groups: the training set (45 points), the 
validation set (9 points) and the testing set (9 points). 

Feasibility of mapping TLI spatial distribution from MODIS

Chaohu Lake is a phosphorus-controlled lake, and TLI is used 
by the managers of the lake as an indicator for assessing the 
trophic level (Zhang et al., 2013; Wang et al., 2007). TLI is 
a chlorophyll-based index aiming to characterize, in both a 
qualitative and quantitative manner, the level of eutrophication 
of lakes. It is a weighted sum based on chlorophyll a and several 
other substances. Currently, the TLI of Chaohu is calculated 
using the national standard and the following equations (Wang 
et al., 2002; Jin et al., 1990):

TLI(∑) =  ∑ 
j = 1

  
m

  Wj  × TLI(j) (1)

TABLE 1
Correlation between Chl-a and other substances 

in�uencing TLI

Chl-a 
(mg/m3)

TP 
(mg/ℓ)

TN 
(mg/ℓ)

SD  
(m)

COD 
(mg/ℓ)

rij
1 0.84 0.82 −0.83 0.83

rij
2 1 0.7056 0.6724 0.6889 0.6889
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namely the bio-optic method (Ma et al., 2006; D›Alimonte et 
al., 2012) and non-linear algorithms (Schwarz et al., 2002; Wu 
et al., 2009; Keiner, 1999; Zhang et al., 2002), were applied in 
retrieving the �ve indicators from satellite images. �erefore, it 
was theoretically possible to use TLI with satellite images and 
in-situ observations mapping the spatial distribution because 
there was a close relationship between the combination of 
satellite image bands and TLI values. However, there were two 
reasons why the TLI retrieval application was hindered using 
the white box method: bio-optic and multivariate regression. 
Firstly, current standard atmospheric correction procedures, 
especially developed for inland waters, were unable to remove 
the atmospheric e�ects on the data. Atmospheric e�ects will 
cause anomalies in bands in lakes, and this will lead to system-
atic errors in retrieving indicators. Secondly, errors caused by 
interactions will increase when the turbidity of the water rises. 
For example, the Chl-a estimation algorithm, based on the 
response at 469 nm, is more likely to be a�ected by concentra-
tions of suspended sediments and coloured dissolved organic 
matter (CDOM), which can be more prevalent in shallow 
waters like Chaohu Lake (Darecki and Stramski, 2004; Shutler, 
2007).

�erefore linear regression and the white box method are 
not suitable for retrieving the �ve components of TLI because 
systematic errors will be introduced into the �nal result. 
Machine learning is an e�ective way to solve non-linear prob-
lems in general. As a practical theory and algorithm of machine 
leaning, arti�cial neural network algorithms are more suitable 
in �tting non-linear relationships of attribute-value pair prob-
lems (Wu et al., 2005; Mitchell, 1997).

Neural networks

Neural networks are a kind of machine learning algorithm that 
imitates brain processes and were originally developed to solve 
non-linear problems like �tting, pattern recognition, cluster-
ing, and time-series prediction (Mitchell, 1997). �ey have 
been successfully applied in environmental sciences (Sattari 
et al., 2012; Krasnopolsky and Chevallier, 2003; Krasnopolsky 
and Schiller, 2003; Song et al., 2014a). Figure 4 (a) shows that 
traditional TLI retrieval requires all water quality factors to be 
calculated from remote-sensing data by means of neural net-
works. In this study, a neural network was used as a transfer-
ring function to link MODIS bands and in-situ TLI values. �e 
neural network used in this study comprised of 3 layers (input 
layer, hidden layer, and output layer) and was a feed-forward 
type including back-propagation of errors. �e �owchart of 
the satellite bands to the TLI neural network is presented in 
Fig. 4 (b). Traditional TLI retrieval requires an intermediate 
process to retrieve all water quality factors, but the remote sens-
ing data-driven method can omit this intermediate process. 
�e red dashed box in Fig. 4 (a) shows the di�erence between 
traditional TLI retrieval and the remote-sensing data-driven 
retrieval method.

In this study, the input layers used the �rst �ve bands of 
the surface re�ectance product from MODIS (MOD09). For 
each observation point, the corresponding re�ectance values 
were extracted from MOD09 as well as the ancillary data. Band 
3, Band 4 and Band 5 (500-m resolution) were interpolated to 
the same pixel size as Band 1 and Band 2 (250-m resolution) 
by using the nearest neighbour algorithm. �e output of the 

Figure 4
Architecture of satellite bands to TLI neural network 
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network was the TLI calculated by in-situ measurement of the 
corresponding pixel. In the hidden layer:

Netj = fsig  (  ∑ 
i = 0

  
N

  Vij  Bandi )  (8)

where: Netj represents the jth node in the hidden layer and vij 
represents weight for unit j corresponding to the ith input. f 
represents the activation function of a node. In this study we 
used a sigmoid function as follows:

fsig(x) =   1 _________ 1 + exp(–x)   (9)

In the output layer, ∑TLI is calculated through the function as 
follows:

∑TLI = f0  (  ∑ 
j = 0

  
n

  ωj  Netj )  (10)

where: ωj is the corresponding weight for each hidden node. f0 
is the activation function. In this study, we used the commonly-
used linear function. Both ωj and vij were assigned with random 
values initially, and then modi�ed by the delta rule according 
to the learning samples.

Out of a total of 63 points, 45 were training data, 9 were 
validation data, and 9 were testing data. �e Levenberg-
Marquardt approximation method was employed to minimize 
errors in each trial. In order to avoid over-training, hidden 
layer nodes between 2 and 5 were tested and results showed that 
4 nodes was the optimal number. We also implemented a multi-
variate regression (MR) method as a comparison experiment. 
Correlations of the �ve bands, MR results, and neural network 
(Nodes 2 to 5) to TLI are given in Table 2. Two commonly-used 
indexes for measuring accuracies were utilized for testing the 
performances of the method, i.e., coe�cient of determination 
(R2) and mean square error (MSE):

MSE =   
 ∑ 
t = 1

  
n

  (Rt – Ft)
2 
 ________ n   (11)

R2 = 1 –   
 ∑ 
t = 1

  
n

  (Rt – Ft)
2 
 ________ 

 ∑ 
t = 1

  
n

  (Rt –  
__

 R )2 
   (12)

�e number of nodes in the hidden layer depends on the 
complexity of the relationship between input and output. Using 

enough nodes ensures the nonlinearity of the neural network in 
�tting the data. However, excessive nodes will lead to over-�tting 
when the network not only learns the real model but also takes 
in noise. In order to �nd the optimal node number, the coef-
�cient of determination (R2) and MSE were calculated to �nd the 
optimal value. R2 indicates how well data �t a statistical model, 
and ranges from 0 to 1. If R2 is closer to the numerical value 1, it 
indicates that this model �ts the data better. Additionally, nega-
tive values of R2 may occur when �tting non-linear functions to 
data. We trained each neural network with node numbers from 2 
to 5 and found that the network with 4 nodes had the minimum 
MSE and highest correlation. Besides this, we used the thresholds 
of each level of TLI to classify the results and compare with the 
in-situ value. �e comparison of the neural network and multi-
variate regression is presented in Table 3.

RESULTS

�e coe�cient of determination (R2) and RMSE of the neural 
network were much better than for the MR results. �is is due 
to the non-linear nature of the neural network in transferring 
the satellite bands into the �ve components of TLI and the 
�nal TLI value. Table 3 shows that the accuracy of classi�ca-
tion using the MR method was not satisfactory. �e di�er-
ence between the retrieved result (59.5) and the actual result 
(60.5) was judged to indicate a classi�cation error. Errors in 
classi�cation occur because classi�cation is based on using 
thresholds to directly separate results. Classi�cation is done 
according to the score interval for di�erent eutrophication 
level statuses. Accuracy of classi�cation is evaluated using the 
actual observed values for the 12 water quality sample sites. �e 
closer the retrieved value from the remote sensing imagery is 
to the observed value, the higher the accuracy of the classi�ca-
tion result. Nevertheless, the large number of uncertainties in 
the water body environment of lakes leads to fuzziness in the 
categorisation and standardization of the di�erent indicators, 
which may lead to the possibility of classi�cation errors. Even 
though the retrieved value from the remote sensing imagery 
may be very close to the observed value, because the observed 
value led to a di�erent classi�cation, this will be judged as a 
classi�cation error. Consequently, an improved evaluation 
method based on fuzzy mathematics should be used to evaluate 
the water quality level. Figure 5 shows a comparison of neural 
network results (4 nodes), MR results, and the TLI calculated 
from sampled data. �e MSE of the 4-node hidden layer neural 
network appears to be much better than that of the MR results.

�e results show that the application of neural networks in 
TLI retrieved from MODIS images outperforms the multivari-
ate retrogression both in its regression accuracy and in the 
retrieval stability. �us, the neural network based TLI mapping 
method can be used as a complement to the conventional data 
sampling method. 

�ese three groups of images were obtained on 2 April 
2013, 3 June 2013, and 11 July 2013, respectively.

TABLE 2
The coe�cient of determination (R2) between TLI and 
MODIS data, multivariate regression (MR) results, and 
neural network results with di�erent node numbers.

Values used to calculate correlations to TLI R2

MODIS Band 1 −0.1746

MODIS Band 2 0.1257

MODIS Band 3 −0.3280

MODIS Band 4 −0.3258

MODIS Band 5 0.0631

Multivariate regression (MR) 0.5677

Neural network (2 nodes) 0.7918

Neural network (3 nodes) 0.8482

Neural network (4 nodes) 0.8937

Neural network (5 nodes) 0.8576

TABLE 3
Comparison of regression results for neural network and 

multivariate regression (MR) methods

MR NN(2) NN(3) NN(4) NN(5)

MSE 10.4689 8.0696 6.2538 5.3452 5.6777

Accuracy of 
classi�cation 0.6508 0.7302 0.7777 0.8571 0.7619
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DISCUSSION

As Fig. 6 indicates, the neural network–retrieved spatial distri-
bution of TLI outperformed the MR approach in two ways: 
• �e range of the TLI retrieved was set between the mini-

mum and maximum of the training data. In this way, 
extreme values were avoided. Even though higher TLI val-
ues could be retrieved, this conservative algorithm main-
tained stability and controllability. By contrast, the range of 
the MR results extended both the minimum and maximum 
of the training data over a larger scale.

• Results calculated from the neural network data-driven 
method show great spatial heterogeneity, which means that 
more eutrophication state information was mined from 
the satellite images. On the contrary, the results of MR are 
spatially smooth. �e linear MR method involves moder-
ate- and low-resolution satellite images sharing the charac-
teristic of having mixed pixels, which leads to similarity of 
the neighbouring pixels and a spatially smooth result. �is 
means that the neural network results are indeed pixel-
based while MR results su�er from the mixed-pixel e�ect.

One obstacle that a�ects the performance of both neural net-
works and MR is the atmosphere. MOD09 is generated by the 
Second Simulation of a Satellite Signal in the Solar Spectrum, 
Vector (6S) model with several atmospheric parameters taken 
either from the National Centres for Environmental Prediction 
(NCEP) (ozone, pressure) or from the MODIS data (aerosol, 
water vapour) (Vermote and Vermeulen, 1999). Future work 
might focus on atmospheric correction, and recently a better 
algorithm has been reported (Guang et al., 2013), which sug-
gests that future improvement in the retrogression accuracy 
might depend on the new method.

Another factor that in�uences the performance of a neural 
network’s data retrieval capability is the spatial resolution of 
MODIS imagery and disturbance of water when sampling. 
�e low resolution of MODIS imagery means the pixel value 
is a mixture of the sampling area and surrounding area. As 
Kuster points out, the spatial distribution of water surface 
algae is at less than 30 m depth (Kuster, 2004). �is may also 
apply to TLI distribution. �e groundtruth is the point value 

while the corresponding pixel is the mixture. Besides this, 
the water sampling method will disturb the surface water and 
push the scum and subsurface aggregations away from the 
ship. �e joint force of the two factors brings uncertainty to 
the �nal results.

�ere is another very important question about vertical 
strati�cation of water. Vertical water column structure may 
lead to changes in concentration. Chaohu Lake is, however, 
an expansive shallow lake, and so the results obtained from 
sampling will be una�ected by vertical strati�cation. For other 
types of lakes, we are developing a three-dimensional model 
based on hydrodynamics, which will consider the in�uence 
of water column structure on water quality. In the future, the 
remote-sensing data will be assimilated with the three-dimen-
sional hydrodynamic model and can be used to monitor and 
analyse the results of model simulation.

Finally, because the number of sample points is not su�cient, 
the accuracy of the model is bound to be a�ected, especially the 
accuracy of the results for the non-sampled area. Based on the 
accuracy error recorded between the actual measured value and 
the inversion value of the neural network model, the deployment 
of more sampling points in the areas of Chaohu Lake record-
ing poor accuracy will improve the accuracy of the model while 
ensuring that a suitable number of points are sampled.

CONCLUSIONS

We implemented a rapid data-driven method for monitoring 
the TLI distribution of Chaohu Lake from MODIS satellite 
remote-sensing data on the basis of an arti�cial neural network. 
Advantages and potential future improvements of this innova-
tive method are listed below:
• Results demonstrate that water quality distribution can 

be predicted with information retrieved from satellite 
remote-sensing images. From the perspective of informa-
tion theory, reducing the intermediate steps may improve 
accuracy because of less information loss in the transfor-
mation process.

• �e TLI distribution mapping interval can be improved. If 
weather permits, the mapping of TLI can be done twice a 
day. Compared with sampling method requiring access by 

Figure 5
Comparison of neural network results (4 nodes), MR results, and TLI calculated from observation data
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boat, this method saves both time and e�ort.
• Inaccuracy caused by surface water disturbance can be 

avoided to some extent. However, this depends on the 
accuracy of the training data acquired by the boat sampling 
method. �is problem can be avoided if automatic water 
sampling stations are created in Chaohu Lake.

• Higher spatial resolution images with an appropriate 
revisit cycle may be used to improve the mapping result. 
To address the limitations of weather and data acquisi-
tion, high temporal resolution MODIS data were used in 
this study. Better spatial resolution Landsat imagery will 
provide better details for determining TLI. More accurate 
pixels concurrent to the observation point will be extracted 
from the image, which will lead to much better regression 
performance and more detailed information for areas with 
di�use blue-green algae.

• �is method demonstrates that ANN is much more suited 
to TLI determination than the MR method. �e key rea-
son for the improved performance lies in the non-linearity 
of neural networks. Various machine-learning algorithms 
have been extensively studied and successfully applied in 
�tting problems. Future work may focus on substituting 
a back-propagation neural network. For example, genetic 
programming has been applied for better performance in 
chlorophyll a concentration retrieval (Chang et al., 2013).

ACKNOWLEDGEMENTS

�is work was supported by the programme of International 
S&T Cooperation ‘Fined earth observation and recognition 
of the impact of global change on world heritage sites’ (Grant 
No. S2013GR0477), National Natural Science Foundation of 
China (No. 41271427), and the research programme of RADI 
‘application of remote sensing technology in water resource 
exploration in the �eld’. We would like to thank Deputy 
Director Fucai Yin from the Department of Environmental 
Protection of Anhui Province, Deputy Director Jing Li from the 
Hefei Environmental Monitoring Central Station, and Director 
Xiaoxian Tang, sta�-member Rui Gao from the Environmental 
Protection Monitoring Station of the Chaohu Management 
Bureau for helping us sample in Chaohu Lake. �e authors 
would also like to thank anonymous reviewers and the editors 
for their valuable and helpful suggestions.

REFERENCES

BURNS NM and BRYERS G (2000) Protocols for monitoring trophic 
levels of New Zealand lakes and reservoirs. URL: https://www.mfe.
govt.nz/withyou/funding/docs/5090_nzlm_protocol_complete_
text.pdf (Accessed 15 October 2013).

CARLSON RE (1977) A trophic state index for lakes. Limnol. Oceanogr. 
22 (2) 361–369.

Figure 6
The retrieval results contrasting the neural network and MR

http://dx.doi.org/10.4314/wsa.v41i5.18
http://www.wrc.org.za
https://www.mfe.govt.nz/withyou/funding/docs/5090_nzlm_protocol_complete_text.pdf
https://www.mfe.govt.nz/withyou/funding/docs/5090_nzlm_protocol_complete_text.pdf
https://www.mfe.govt.nz/withyou/funding/docs/5090_nzlm_protocol_complete_text.pdf


760

http://dx.doi.org/10.4314/wsa.v41i5.18
Available on website http://www.wrc.org.za
ISSN 1816-7950 (On-line) = Water SA Vol. 41 No. 5 October 2015
Published under a Creative Commons Attribution Licence

KUSTER T (2004) Quantitative detection of chlorophyll in cyanobac-
terial blooms by satellite remote sensing. Limnol. Oceanogr. 49 (6) 
2179–2189.

LI Y (2007) An integrated water quality modeling system with 
dynamic remote sensing feedback. PhD thesis, Chester F. 
Carlson Center for Imaging Science, Rochester Institute of 
Technology.

LI YM, HUANG JZ, WEI YC, LU WN and SHI JZ (2006) Evaluating 
eutrophic state of Taihu Lake by in situ hyperspectra. Huan jing ke 
xue 27 (9) 1770–1775.

MA RH, TANG JW and DAI JF (2006) Bio-optical model with optimal 
parameter suitable for Taihu Lake in water colour remote sensing. 
Int. J. Remote Sens. 27 (19) 4305–4328.

MEI CQ, WANG XY and LI WD (2008a) Application of BP network 
model in the evaluation of eutrophication in Chaohu. Energ. 
Environ. 01 9–11.

MEI CQ, WANG XY and PENG P (2008b) Application of MODIS data 
for monitoring blue-green algal bloom in Chaohu Lake. Remote 
Sens. Technol. Appl. 23 (3) 328–332.

NIWA (NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC 
RESEARCH, MINISTRY FOR THE ENVIRONMENT) (2010) URL: 
http://www.mfe.govt.nz/environmental-reporting/fresh-water/lake-
water-quality-indicator/index.html (Accessed 15 October 2013).

MITCHELL TM (1997) Machine Learning. McGraw Hill, New York. 
60–63.

NSCEP (NATIONAL SERVICE CENTER FOR ENVIRONMENTAL 
PUBLICATIONS, CORVALLIS ENVIRONMENTAL RESEARCH 
LABORATORY, OFFICE OF RESEARCH AND DEVELOPMENT, 
U.S. ENVIRONMENTAL PROTECTION AGENCY) (1976) 
Trophic Classi�cation of Lakes Using LANDSAT-1 (ERTS-1) 
Multispectral Scanner Data. URL: http://nepis.epa.gov/Exe/ZyPDF.
cgi/9100T1G3.PDF?Dockey=9100T1G3.PDF (Accessed 21 March 
2015) 108–111.

SATTARI MT, APAYDIN H and OZTURK F (2012) Flow estimations 
for the Sohu Stream using arti�cial neural networks. Environ. 
Earth Sci. 2012 (66) 2031–2045.

SCHWARZ JN, KOWALCZUK P, KACZMAREK S, COTA GF, 
MITCHELL BG, KAHRU M, CHAVEZ FP, CUNNINGHAM A, 
MCKEE D, GEGE P and co-authors (2002) Two models for absorp-
tion by coloured dissolved organic matter (CDOM). Oceanologia 
44 (2) 209–241.

SHUTLER JD, LAND PE, SMYTH TJ and GROOM SB (2007) 
Extending the MODIS 1 km ocean colour atmospheric correction 
to the MODIS 500 m bands and 500 m chlorophyll a estimation 
towards coastal and estuarine monitoring. Remote Sens. Environ. 
107 (4) 521–532.

SONG JW, WANG XY, LIAO Y, ZHEN J, ISHWARAN N, GUO 
HD, YANG RX, LIU CS, CHANG C and ZONG X (2014a) An 
improved neural network for regional giant panda habitat suitabil-
ity mapping: A case study in Ya’an Prefecture. Sustainability 6 (7) 
4059–4076.

SONG JW, XIANG B, WANG XY, WU L and CHANG C (2014b) 
Application of dynamic data driven application system in environ-
mental science. Environ. Rev. 22 (999) 287–297.

SONG K, LI L, Li Z, TEDESCO L, HALL B and SHI K (2013) Remote 
detection of cyanobacteria through phycocyanin for water supply 
source using three-band model. Ecol. Inf. 2013 (15) 22–33.

VERBURG P, HAMILL K, UNWIN M and ABELL J (2010) Lake 
water quality in New Zealand 2010: Status and trends. URL: http://
www.mfe.govt.nz/publications/ser/lake-water-quality-in-nz-2010/ 
(Accessed 15 October 2013). 

VERMOTE E (2013) MOD 09 - Surface Re�ectance; Atmospheric 
Correction Algorithm Products. URL: http://modis.gsfc.nasa.gov/
data/dataprod/dataproducts.php?MOD_NUMBER=09 (Accessed 
15 October 2013).

VERMOTE EF and VERMEULEN A (1999) Atmospheric correction 
algorithm: spectral re�ectances (MOD09). ATBD version, 4. URL: 
http://mod09val.ltdri.org/publications/atbd_mod09.pdf (Accessed 
15 October 2013).

WANG MC, LIU XQ and ZHANG JH (2002) Evaluate method and 
classi�cation standard on lake eutrophication. Zhongguo Huanjing 
Jiance 18 (5) 47–49.

CARLSON RE and SIMPSON J (1996) A Coordinator’s Guide 
to Volunteer Lake Monitoring Methods. North American 
Lake Management Society, Madison. 96 pp. 

CHANG NB, XUAN ZM and YANG YJ (2013) Exploring spatiotem-
poral patterns of phosphorus concentrations in a coastal bay 
with MODIS images and machine learning models. Remote Sens. 
Environ. 134 (7) 100–110.

CHANG NB, YANG YJ, DARANPOB A, JIN KR and JAMES T (2012) 
Spatiotemporal pattern validation of chlorophyll-a concentrations 
in Lake Okeechobee, Florida, using a comparative MODIS image 
mining approach. Int. J. Remote Sens. 33 (7) 2233–2260.

CNEMC (CHINA NATIONAL ENVIRONMENTAL MONITORING 
CENTER) (2009) Technical regulations for classi�cation and evalu-
ation method of lake (reservoir) eutrophication. URL: http://www.
cnemc.cn/publish/100/news/news_8849.html (Accessed 15 October 
2013).

DLMEMC (DALIAN MUNICIPAL ENVIRONMENTAL 
MONITORING CENTER) (2012) URL: http://kjs.mep.gov.cn/hjb-
hbz/bzwb/shjbh/sjcg��z/201203/W020120410336075623072.pdf 
(Accessed 31 March 2015).

D’ALIMONTE D, ZIBORDI G, BERTHON JF, CANUTI E and 
KAJIYAMA T (2012) Performance and applicability of biooptical algo-
rithms in di�erent European seas. Remote Sens. Environ. 124 402–412.

DARECKI M and STRAMSKI D (2004) An evaluation of MODIS and 
SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. 
Environ. 89 326–350.

DAREMA F (2004) Dynamic data driven applications systems: 
A new paradigm for application simulations and measure-
ments. In: Computational Science-ICCS 2004: 4th International 
Conference, 6–9 June 2004, Krak’ow.

DAREMA F, ROTEA M, GOLDBERG M, NEWLON DH, 
CHERNIAVSKY JC, FIGUEROA JE, HUDSON JE, FRIEDMAN 
C, LYSTER P and BOHN R (2005) DDDAS: Dynamic Data 
Driven Application Systems. URL: http://www.nsf.gov/pubs/2005/
nsf05570/nsf05570.htm (Accessed 20 September 2013).

El SERAFY GY, BLAAS M, ELEVELD MA and VAN DER WOERD 
HJ (2007) Data assimilation of satellite data of suspended particu-
late matter in Del�3D-WAQ for the North Sea. In: Proceedings of 
the Joint EUMETSAT/AMS Conference, 24–28 September 2007, 
Darmstadt.

FREEBORN PH, WOOSTER MJ, and ROBERTS G (2011) Addressing 
the spatiotemporal sampling design of MODIS to provide estimates 
of the �re radiative energy emitted from Africa. Remote Sens. 
Environ. 115 475–489.

GONS HJ, RIJKEBOER M and RUDDICK KG (2002) A chlorophyll-
retrieval algorithm for satellite imagery (Medium Resolution 
Imaging Spectrometer) of inland and coastal waters. J. Plankton 
Res. 24 (9) 947–951.

GUANG J, XUE Y, YANG LK, MEI LL and HE XW (2013) A method 
for retrieving land surface re�ectance using MODIS data. IEEE J. 
Selected Topics Appl. Earth Obs. Remote Sens. 6 (3) 1564–1570.

HE BY, LIANG SW, DING C, YANG XQ and HU K (2009) Estimating 
trophic level indexes of lakes in Wuhan by using CBERS-2 IMAGE. 
Changjiang Liuyu Ziyuan Yu Huanjing 18 (12) 1181–1186.

JIANG SY, XIONG QX and ZHU JQ (2013) Evaluation of lake 
eutrophication based on the HJ-1 satellite multispectral data. In: 
International Forum on Computer and Information Technology, 
24–25 December 2013, Shenzhen.

JIN XC , TU QY, ZHANG ZS, JIANG XC, WANG Y, ZHU X, SHU JH, 
XU NN, HUANG CZ, XU RX and co-authors (1990) Speci�cations 
for Lake Eutrophication Survey (2nd Edition). China Environment 
Science Press, Beijing. 291–295.

KEINER LE (1999) Estimating oceanic chlorophyll concentrations 
with neural networks. Int. J. Remote Sens. 20 (1) 189–194.

KRASNOPOLSKY VM and CHEVALLIER F (2003) Some neural 
network applications in environmental sciences. Part II: advanc-
ing computational e�ciency of environmental numerical models. 
Neural Netw. 2003 (16) 335–348.

KRASNOPOLSKY VM and SCHILLER H (2003) Some neural network 
applications in environmental sciences. Part I: Forward and inverse 
problems in geophysical remote measurements. Neural Netw. 2003 
(16) 321–334.

http://dx.doi.org/10.4314/wsa.v41i5.18
http://www.wrc.org.za
http://www.mfe.govt.nz/environmental-reporting/fresh-water/lake-water-quality-indicator/index.html
http://www.mfe.govt.nz/environmental-reporting/fresh-water/lake-water-quality-indicator/index.html
http://nepis.epa.gov/Exe/ZyPDF.cgi/9100T1G3.PDF?Dockey=9100T1G3.PDF
http://nepis.epa.gov/Exe/ZyPDF.cgi/9100T1G3.PDF?Dockey=9100T1G3.PDF
http://www.mfe.govt.nz/publications/ser/lake-water-quality-in-nz-2010/ 
http://www.mfe.govt.nz/publications/ser/lake-water-quality-in-nz-2010/ 
http://mod09val.ltdri.org/publications/atbd_mod09.pdf 
http://www.cnemc.cn/publish/100/news/news_8849.html 
http://www.cnemc.cn/publish/100/news/news_8849.html 
http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201203/W020120410336075623072.pdf 
http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201203/W020120410336075623072.pdf 
http://www.nsf.gov/pubs/2005/nsf05570/nsf05570.htm
http://www.nsf.gov/pubs/2005/nsf05570/nsf05570.htm


761

http://dx.doi.org/10.4314/wsa.v41i5.18
Available on website http://www.wrc.org.za
ISSN 1816-7950 (On-line) = Water SA Vol. 41 No. 5 October 2015
Published under a Creative Commons Attribution Licence

WANG T, HUANG WJ, LIU LY, JIA JH and SHEN T (2007) 
Hyperspectral monitoring model of eutrophication in Poyang 
Lake. Sci. Surv. Mapp. 32 (4) 18.

WEI FS, BI T, QI WQ, SUN ZG, XI JQ, ZHANG YH, WANG ZG, 
CHEN G, YU XH, ZENG SN and co-authors (2002) Monitoring 
and Analysis Method of Water and Waste Water (4th edn). China 
Environment Science Press, Beijing. 670–671.

WU JS, ZHOU YJ and JIN L (2005) �e neural network and its 
research development. J. Guangxi Teachers Educ. Univ. (Nat. Sci. 
Ed.) 22 (1) 92–97.

WU M, ZHANG W, WANG XJ and LUO DG (2009) Application of 
MODIS satellite data in monitoring water quality parameters 
of Chaohu Lake in China. Environ. Monit. Assess. 148 (1–4) 
255–264.

XIE J, WANG XY, ZHANG J, LI W (2010) Analysing developing trend 
of chlorophyll-a concentration in Chaohu Lake based on TM/
ETM+ image. China Environ. Sci. 30 (5) 677–682.

YANG DT, PAN DL, ZHANG XY, ZHANG XF, HE XQ and LI SJ 
(2006) Retrieval of chlorophyll a and suspended solid concentra-
tions by hyperspectral remote sensing in Taihu Lake, China. Chin. 
J. Oceanol. Limnol. 24 (4) 428–434.

YAO YJ, ZHU L and SUN MZ (2009) Interior water body water quality 
remote sensing monitoring method based on the HJ-1 satellite 
multi-spectral data. In: 2009 International Symposium of HAIHE 
Basin Integrated Water and Environment Management, 16 October 
2009, Beijing.

YIN W (1989) Water quality – determination of the chemical oxygen 
demand – dichromate method. URL: http://www.sepa.gov.cn/
image20010518/3632.pdf (Accessed 31 March 2015).

YUAN YL and YAO Y (1989) Water quality – determination of total 
phosphorus ammonium molybdate – Spectrophotometric method. 
URL: http://www.sepa.gov.cn/image20010518/3655.pdf (Accessed 
31 March 2015).

ZHANG R, GAO LM, XI BD, SU J, HUO SL, JI DF, Lü NQ, and ZHU 
JC (2013) Improved TLI index method and its application in 
nutritional states evaluation in Chaohu Lake. Huanjing Gongcheng 
Xuebao 7 (6) 2127–2133.

ZHANG Y, PULLIAINEN J, KOPONEN S and HALLIKAINEN M 
(2002) Application of an empirical neural network to surface 
water quality estimation in the Gulf of Finland using combined 
optical data and microwave data. Remote Sens. Environ. 81 (2) 
327–336.

http://dx.doi.org/10.4314/wsa.v41i5.18
http://www.wrc.org.za
http://www.sepa.gov.cn/image20010518/3632.pdf 
http://www.sepa.gov.cn/image20010518/3632.pdf 
 http://www.sepa.gov.cn/image20010518/3655.pdf 

