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ABSTRACT
Water temperature is a key variable affecting aquatic organisms. Understanding their response to elevated water 
temperatures is important for estimating upper thermal limits, and ultimately for assisting with setting defendable, 
biologically-relevant water temperature guidelines for lotic systems. Sublethal effects impacting on an individual organism 
or species may manifest at higher levels of the hierarchy, namely, populations, communities and entire ecosystems. Sublethal 
effects typically include those affecting an organism’s physiology and metabolism (e.g. growth rates, secondary productivity, 
respiration); phenology (e.g. development time, voltinism, emergence); reproductive success and fitness (e.g. fecundity, rates 
and success of egg development and hatching); behaviour (e.g. migration, movement, drift); and broad-scale ecological 
effects (e.g. species richness, composition, density, distribution patterns). Sublethal effects are discussed with examples 
drawn from freshwater studies, in particular those focused on aquatic insects. Commonly-used methods, which vary 
from simple, cost-effective, laboratory-based methods to more elaborate, expensive, laboratory- and field-based studies, 
are assimilated to serve as a toolbox for future thermal research. Ultimately, the method adopted depends largely on the 
question(s) being asked and available resources.
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INTRODUCTION

Water temperature is an important abiotic driver of aquatic 
ecosystems influencing many aspects of an organism’s existence 
including its feeding, metabolic and growth rates, fecundity, 
emergence, behaviour and ultimately survival (see Caissie, 
2006; Dallas, 2008; Webb et al., 2008 for reviews). All organ-
isms have a preferred range of temperatures, often termed the 
‘optimum thermal regime’ (Vannote and Sweeney, 1980), at 
which optimal growth, reproduction and other measures of 
‘health’ are greatest (Dallas and Day, 2004). This optimum 
range is bounded by the thermal tolerance range (i.e. the range 
over which a species may survive) with upper and lower toler-
ance limits demarcating the thermal extremes. Organisms 
of a given species may survive on either side of this optimal 
range but as the tolerance limits are approached, signs of stress 
become evident. The first signs of thermal stress are usually 
behavioural with avoidance of suboptimal conditions, followed 
by physiological stress (e.g. respiratory, metabolic or excretory 
rates may increase), reduction in egg and/or sperm production 
and hence in fecundity, and increased susceptibility to parasites 
and pathogens and also to food shortages. Effects are often 
cumulative and may vary with life stage. Ultimately, biologi-
cal responses to alterations in water temperature may include 
changes in individual life history patterns, species distribution 
and range, communities and aquatic biodiversity; as well as 
increases in the number and spread of invasive and pest species, 
and in waterborne and vector-borne diseases, and extinction of 
vulnerable species (Dallas and Rivers-Moore, 2014).

Determining thermal limits experimentally is important 
for assisting with setting defendable, biologically-relevant water 
temperature guidelines for lotic systems. An approach adopted 
by Rivers-Moore et al. (2013a) for the ecological Reserve in 
South Africa is based on the 7-day moving average of mean, 
minimum and maximum daily temperatures, and exceedances. 
This is linked to a threshold temperature that signals when 
adverse biological responses are likely to occur. These threshold 
temperatures, which may reflect lethal or sublethal endpoints, 
are determined via laboratory or field studies. Lethal endpoints 
are commonly estimated using the Critical Thermal Method or 
the Incipient Lethal Temperature method (Dallas and Ketley, 
2011; Dallas and Rivers-Moore, 2012; Dallas et al., 2015). 
Sublethal effects (i.e. non-lethal but which usually forces adap-
tation for survival) are numerous and, because they are often 
cumulative, may be reflected as a subtle process of attrition on 
populations and communities, through their differential effects 
on individuals of different species (Table 1). Effects include 
those altering an organism’s physiology and metabolism (e.g. 
growth rates, secondary productivity, respiration), phenology 
(e.g. development time, voltinism, emergence), reproductive 
success and fitness (e.g. fecundity, rates and success of egg 
development and hatching), behaviour (e.g. migration, move-
ment, drift), and broad-scale ecological effects (e.g. species rich-
ness, composition, densities and distribution patterns). Because 
the structure of living organisms is organised in a hierarchical 
manner, sublethal effects impacting on an individual organism 
or species may manifest at one or more levels in the hierarchy, 
namely populations, communities and entire ecosystems. 
Many studies on sublethal effects are carried out under natural 
conditions in the field, through regular sampling of sites over 
the period of at least 1 or 2 years (e.g. most phenological and 
ecological studies, Jacobsen et al., 1997; Verberk et al., 2008; 
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TABLE 1
Summary of the major effects of sublethal water temperatures on aquatic organisms

Major effects Response 
variables

General findings summarised from studies of 
response variables in relation to temperature

Selection of relevant literature

Physiological and 
metabolic

Performance 
curves

Performance is optimal at intermediate temperatures 
and outside of this range it is reduced.

Nebeker, 1971a; Heiman and Knight, 1975; 
Brittain, 1976; Sweeney and Vannote, 
1978; Huey and Stevenson, 1979; Vannote 
and Sweeney, 1980; Humpesch, 1981; 
Brittain, 1983; Benke et al., 1984; Rigler and 
Downing, 1984; Sweeney, 1984; Stearns, 
1989; Rowe and Ludwig, 1991; Giberson 
and Rosenberg, 1992; Golubkov et al., 
1992; Atkinson et al., 1994; Atkinson, 1995; 
Abrams et al., 1996; Angilletta et al., 2004; 
Connolly et al., 2004; Manush et al., 2004; 
Das et al., 2005; Reynolds and Benke, 2005; 
Rostgaard and Jacobsen, 2005; Acuña et al., 
2008; Dallas and Ketley, 2011; Dallas and 
Rivers-Moore, 2012; Rotvit and Jacobsen, 
2013; Verberk and Bilton, 2013; Verberk et 
al., 2013.

Growth rates Growth rates increase with increasing temperature 
to an optimum, after which they begin to decline 
and tend to zero as thermal tolerance limits are 
approached. Temperatures for optimal growth do 
not translate to temperatures for optimal growth 
efficiency, emergence success or length of emergence 
period.

Size at emergence Faster growth at warmer temperatures results in 
smaller size at maturity. Colder temperatures result 
in slower growth, longer development time and larger 
size at maturity.

Secondary 
productivity and 
assimilation

Secondary productivity is increased at warmer 
temperatures.

Respiration Respiration is increased at warmer temperatures 
and oxygen may become a limiting factor at warmer 
temperatures.

Phenological Total develop-
ment time

Faster growth rates at warmer temperatures leads to 
shorter development periods and may result in early 
emergence cues in aquatic insects. 

Nebeker, 1971a; Southwood, 1977; Clifford, 
1982; Brittain, 1982; Sweeney, 1984; 
Sweeney et al., 1986; Perry et al., 1987; 
Söderström, 1988; Southwood, 1988; Rader 
and Ward, 1989; Brittain, 1990; Giberson 
and Rosenberg, 1992; Sweeney et al., 1995; 
Harper and Peckarsky, 2006; Verberk et al., 
2008; Elliott, 2009; Resh and Rosenberg, 
2010; Ross-Gillespie, 2014.

Voltinism 
flexibility

Warmer temperatures with greater variability promote 
more generations produced in a year (bi- tri- or multi- 
voltinism) and more flexible life histories; while more 
conservative; less flexible life histories are selected for 
under colder more stable conditions. Cold tempera-
tures result in slower growth rates; longer development 
periods and delayed emergences in insects and are 
normally associated with fewer generations over year 
(univoltine life cycles).

Timing and 
length of 
emergence

Extended; unsynchronised emergence periods in 
aquatic insects at warm temperatures; more synchro-
nous and shorter emergence at cold temperatures

Reproductive suc-
cess and fitness

Fecundity Fecundity is directly related to body size of females at 
maturity and so declines with higher temperatures.

Green, 1966; Harper and Hynes, 1970; 
Stearns, 1976; Humpesch, 1978, 1980; 
Humpesch and Elliott, 1980; Sweeney 
and Vannote, 1981; Sutcliffe and Carrick, 
1981; Humpesch, 1984; Brittain et al., 
1984; Tómasson et al., 1984; Elliott, 1984; 
Brittain and Lillehammer, 1987; Elliott, 
1988; Lillehammer et al., 1989; Brittain, 
1991; Brittain and Campbell, 1991; Jackson 
and Sweeney, 1995; Brittain, 1995; Sweeney 
et al., 1995; Pritchard et al., 1996; Corkum 
et al., 1997; Gillooly and Dodson, 2000; 
Yoshimura et al., 2006; Knispel et al., 2006; 
Ross-Gillespie, 2014.

Rates and 
success of egg 
development

Eggs develop faster with increasing temperatures that 
are within egg development limits. Temperatures that 
result in fastest egg development are not always those 
that result in highest hatching success. Hatching suc-
cess is usually highest at temperatures slightly lower 
than those that promote fastest development. High 
temperatures approaching development limits lead to 
deformed or retarded development and lower hatch 
success.

Juvenile survival 
and recruitment

Low temperatures below species-specific thresholds 
may induce egg diapause and similarly temperatures 
above species-specific thresholds may terminate dia-
pause. Increased temperatures result in higher juvenile 
mortality rates.

Behavioural Migration Organisms migrate or move to a zone of thermal pref-
erence when introduced to a wide range of tempera-
tures; even if this means foregoing access to resources 
such as food.

Hutchison and Manness, 1979; Gerritsen, 
1982; Baker and Feltmate, 1989; Richardson 
et al., 1994; Hernández-Rodríguez and 
Bückle-Ramirez, 1997; Bury et al., 2000; 
Burks et al., 2002; Hernández-Rodríguez 
et al., 2002; Gerald and Spezzano, 2005; 
Rossetti and Cabanac, 2006; Tate et al., 
2006; McCullough et al., 2009.

Drift Dramatic and sudden increases in temperature 
may lead to catastrophic drift in aquatic insects to 
escape. Gradually increased temperatures may lead to 
increased amplitude of diel drift.
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al., 2004) and, generally, lower water temperatures result in 
decreased growth rates while warmer water temperatures cause 
an increase in growth rates, shorter development times and 
smaller adult size at emergence (e.g. Hynes, 1970; De Moor, 
1982; 1994; Brittain, 1982; Ward and Stanford, 1982; Sweeney 
and Vannote, 1984; Giberson and Rosenberg, 1992; Sibly and 
Atkinson, 1994; Gillooly et al., 2002; Reynolds and Benke, 
2005). 

Growth is assessed by monitoring individual organisms 
over the entire growth period from hatching to adult emer-
gence or over a particular part of the life cycle. At the start of 
the study period a subsample of study organisms are collected, 
measured (e.g. body length head capsule width), dried and 
weighed to obtain a length: mass relationship, which is typi-
cally exponential. Thereafter organisms are sampled at each 
interval and a small subsample is similarly measured, dried and 
weighed to provide length-to-biomass relationships for the full 

Ross-Gillespie, 2014). However, several questions related to 
the sublethal effects of temperature lend themselves more to 
experimental procedures undertaken in the laboratory over 
shorter time periods (e.g. studies on physiology, metabolism, 
reproductive success and behaviour, Brittain, 1976; 1991; Dallas 
and Ketley, 2011; Dallas and Rivers-Moore, 2012). 

This paper provides an overview of the effect of sublethal 
temperatures on aquatic organisms, with discussion drawn 
from freshwater studies, in particular those focused on aquatic 
insects. Commonly-used methods, which vary from simple, 
cost-effective, laboratory-based methods to more elaborate, 
expensive, laboratory- and field-based studies, are assimilated 
to serve as a toolbox for future thermal research. 

Physiological and metabolic effects

Studies relating to physiological and metabolic processes are 
commonly carried out in the laboratory (Brittain, 1976; 1991; 
Dallas and Ketley, 2011; Dallas and Rivers-Moore, 2012). 
Organisms are typically maintained under a range of constant 
temperatures or in digitally controlled water baths where 
temperature may be increased gradually and precisely. Body 
temperature is the most important ecophysiological variable 
affecting the performance of ectotherms and many physiologi-
cal and metabolic responses are sensitive to body temperature, 
including, for example, locomotion, foraging ability, rates of 
feeding and growth (Angiletta et al., 2002; Angiletta, 2006). 
Performance curves are often used to reflect the relationship 
between body temperature and a specific type of performance 
such as growth rate, and are described by an asymmetric func-
tion where maximum performance is achieved at intermediate 
body temperatures, termed the thermal optimum (Angiletta et 
al., 2002) (Fig. 1). 

Growth and size

Growth rates of aquatic organisms are a function of ingestion, 
assimilation, activity and metabolism. Numerous studies have 
examined the relationship between development time and body 
size (Stearns and Koella, 1986; Roff, 1992; Berrigan and Koella, 
1994; Atkinson, 1995; Nylin and Gotthard, 1998; Angiletta et 

TABLE 1 (continued)

Major effects Response 
variables

General findings summarised from studies of 
response variables in relation to temperature

Selection of relevant literature

Ecological Species richness Richness generally increases with increased annual 
water temperature variation. Increased variation in 
diurnal temperatures favours certain species while 
negatively affecting others.

Cummins, 1974; McMahon, 1975; Sweeney 
and Vannote, 1978; Vannote et al., 1980; 
Vannote and Sweeney, 1980; Ward and 
Stanford, 1983; Hawkins, 1986; Townsend, 
1989; Brittain, 1991; Hart and Rayner, 
1994; Brittain and Bildeng, 1995; Hogg and 
Williams, 1996; Williams, 1996; Vinson 
and Hawkins, 1998; Gasith and Resh, 1999; 
Jackson et al., 2001; Durance and Ormerod, 
2007; Ficke et al., 2007; Fjellheim and 
Raddum, 2008; Gustafson, 2008; Rahel and 
Olden, 2008; Woodward et al., 2010; Statzner 
and Dolédec, 2011; Sheldon, 2012; Filipe et 
al., 2013; Eady et al., 2013. Rivers-Moore et 
al., 2013b.

Species 
composition

Species composition is generally more diverse in habi-
tats experiencing a wider range of annual and diurnal 
temperatures.

Density Latitudes and altitudes promoting optimum tempera-
ture ranges for a wider range of species result in great-
est densities and abundances of those species.

Distribution 
patterns

Water temperatures control aquatic species distribu-
tion patterns. Cool headwaters represent ancestral 
habitat of many aquatic insects. Colonisation of 
lower reaches and lentic waters involved adaptation 
to warmer thermal conditions. Cool waters represent 
thermal refugia for cold adapted stenotherms. While 
warm stenotherms and eurytherms are able to colonise 
habitats exhibiting a wide range of temperatures.

Figure 1
Representation of a typical performance curve for an aquatic organism 
where a specific performance measure is monitored at regular intervals 
as temperature is increased resulting in increased body temperatures. 

(Adapted from Angilletta et al., 2002)
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range of sizes over the study period. For the remaining organ-
isms, sclerotised body parts are measured in conjunction with 
body length to provide a measure of increasing size. Where 
body length-to-biomass equations have been calculated for the 
study organism across a range of sizes, instantaneous growth 
rates are then calculated by determining the change in initial 
biomass compared to final biomass from hatching to emergence 
(Benke et al., 1984) or over the specific time period measured. 
Instantaneous growth rates as well as rates of body size increase 
may then be compared across temperature treatments to deter-
mine thermal optima for growth.

Similarly, growth rates may be calculated in relation to sex 
and age to determine if differences in growth exist as a result 
of the effects of sexual dimorphism or if growth rates vary over 
different developmental stages (e.g. Nylin and Gotthard, 1998; 
Shama and Robinson, 2006). In most aquatic organisms (espe-
cially aquatic insects) monitored in the laboratory, the number of 
flagellar segments on the antennae of organisms may be counted 
upon each successive moult and may be quantitatively related to 
body size and instars to provide an accurate measure of age (e.g. 
Khoo, 1964; Pöckl, 1992). Age may then be related to growth rate 
to determine if growth rate remains constant throughout the 
entire life cycle or if it changes at different stages.

Secondary productivity

Energy sources, primary and secondary productivity, pro-
ducer communities and the ratio of production to respiration 
vary longitudinally down a river system (Vannote et al. 1980). 
Secondary productivity of a heterotrophic population, defined 
as the biomass accumulated by that population per unit time 
(Rigler and Downing, 1984; Benke and Huryn, 2006), is a func-
tion of assimilation efficiency and net production efficiency. 
Annual secondary productivity is the sum of all biomass 
produced by a population during 1 year, including production 
remaining at the end of the year and all production lost during 
this period (possibly through mortality, loss of tissue reserves 
through moulting and also emigration)(Benke and Huryn, 
2006). Such information may be used to address (i) the transfer 
of energy or materials within communities and ecosystems, (ii) 
the rational management of aquatic resources, (iii) the detec-
tion of the effects of pollution and (iv) the formation of general 
theories of biological productivity (Downing, 1984) 

Secondary productivity has been shown to increase in rela-
tion to increasing water temperature (where these temperatures 
are within the thermal tolerance limits of the organism) in con-
junction with increases in biomass levels. As high growth rates 
and high biomass are not commonly maximised in conjunction 
with each other, it is often the case that rapid growth rates are 
concomitant with low biomass, while slow to moderate growth 
rates are more commonly associated with high biomass (Huryn 
and Wallace, 2000). Warm temperate streams, subject to fre-
quent physical disturbance from high flow events, tend to yield 
higher levels of production as these conditions select for taxa 
with rapid growth rates, short development periods and smaller 
sizes at maturity (Huryn and Wallace, 2000). In such scenarios 
production is driven by rapid growth rates rather than biomass 
accrual (Huryn and Wallace, 2000). While water temperature 
plays a major role in driving secondary production, photo-
period as well as nutrition quantity and quality are additional 
factors that should be considered when assessing optimum 
rates of secondary productivity (Savage, 1986; Sweeney and 
Vannote, 1981; Giberson and Rosenberg, 1992; Reynolds and 
Benke, 2005).

While several methods exist for calculating secondary 
productivity (Waters and Crawford, 1973; Rigler and Downing, 
1984; Benke and Huryn, 2006) certain common data, namely 
measures of mean body mass of individuals as well as an 
estimate of the number of individuals (density) for each time 
period or size class (Rigler and Downing, 1984), are required. 
These data are attained by taking samples of the population 
at different times during its development, or by splitting the 
population over the entire growth period into different size 
classes (Rigler and Downing, 1984). The history of the popula-
tion or cohort is then reconstructed as a simplified histogram 
of numbers of individuals against individual mass (Rigler and 
Downing, 1984). Calculations of secondary productivity are 
usually accomplished with field studies, although laboratory 
experiments may be used to obtain insight into selected aspects 
of production processes for a specific time period under differ-
ent environmental conditions (Gulati, 1974; Lutterschmidt and 
Hutchinson, 1997). 

Respiration

At warmer temperatures growth rates are faster, as are meta-
bolic demands for oxygen (Hutchison, 1981; Verberk et al., 
2011). The solubility of oxygen in water is inversely related to 
temperature (Dallas and Day, 2004) and oxygen shortages arise 
as water temperature increases. The result is that cardiac and 
ventilatory activities of aquatic organisms may become unable 
to provide sufficient oxygen at high temperatures, which subse-
quently leads to a shift from aerobic to anaerobic metabolism to 
conserve energy status (Frederich and Pörtner, 2000; Verberk 
et al., 2013). Furthermore, in nutrient-rich systems the high 
respiration activity of algae or macrophytes at night depletes 
available oxygen resources, especially at warmer temperatures. 
Respiration rates may be measured at a range of water tempera-
tures to determine at which threshold temperatures oxygen 
becomes a limiting factor. More specifically the temperature 
that triggers the onset of anaerobic metabolism (Verberk et 
al., 2013), or is observed to be detrimental to a performance 
response (e.g. locomotion, foraging), may be determined exper-
imentally using respiration chambers. Over the past 3 decades, 
with the introduction of respirometer chambers by McIntire et 
al. (1964), scientists have been able to successfully determine 
respiration rates of individual organisms and benthic com-
munities in the laboratory (Bott, 2006). These chambers allow 
for control of environmental factors such as water temperature, 
which is then related to metabolic parameters or performance 
responses (Bott, 2006). 

Phenological effects

Phenological effects are those related to total developmental 
period, voltinism (i.e. the number of annual broods, genera-
tions or cohorts produced by an organism in a year), type 
of life cycle and the timing of specific life-history events 
such as hatching or emergence (Hynes, 1970; Verberk et al., 
2008). Life-history studies, autecology and descriptive ecol-
ogy provide fundamental information necessary to conduct 
virtually all modern evolutionary and applied ecological 
studies, particularly those relating to aquatic invertebrates 
(Butler, 1984; Verberk et al., 2008; Resh and Rosenberg, 2010). 
Understanding an organism’s life-history allows one to pre-
dict the response of that organism to variation and change in 
environmental parameters such as temperature (Power et al., 
1988; Resh and Rosenberg, 2010).
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Total development time and voltinism

Since temperature exerts a major control over metabolic pro-
cesses and growth, organisms with faster growth rates may 
complete their development in a shorter period and thus produce 
more generations or cohorts in a single year compared to those 
with slower growth rates. Voltinism ranges from univoltine (1) 
to bivoltine (2), trivoltine (3) and polyvoltine (3 or more) genera-
tions within a year. Semi-voltine organisms are those in which a 
single generation may take 2 or 3 years to develop (Hynes, 1970; 
Clifford, 1982). Some species of aquatic insect (e.g. the univol-
tine Palearctic Leptophlebia species and Nearctic Leptophlebia 
cupida) exhibit fairly constant development times and voltin-
ism over a wide range of latitudes, climates and environments 
(Clifford et al., 1979; Brittain, 1982). Others (e.g. multivoltine 
Baetidae, Simuliidae as well as the univoltine species Rhithrogena 
semicolorata) vary the number of generations produced in a year 
to suit local environmental conditions thereby exhibiting a large 
degree of flexibility in their life cycle development time and con-
sequently their voltinism over their distributional range (Hynes, 
1970; Humpesch, 1979; Ward and Stanford, 1982). 

The majority of life-history studies are based on regular 
field observations or samples collected from one or more sites 
for a period of a year or longer. Organisms collected in each 
sample for each time period are enumerated to provide either 
relative abundance or density, measured (body length, head 
capsule width) and assigned either a life cycle stage or instar 
(e.g. using antennal counts). The number and size of organ-
isms may then be tracked through time from hatching to adult 
emergence to provide insight into the number of generations 
produced in a year, the length of development period and the 
timing of adult emergence. Temperature has been shown to 
influence all of these phenological aspects (Ross-Gillespie, 
2014). For example, the univoltine mayfly, Lestagella penicillata, 
had a slower development period (with a greater number of 
larval instars) and also later emergence in cold rivers compared 
to warm ones (Ross-Gillespie, 2014). 

While comparatively few life-history studies have been 
conducted in the laboratory compared to the field, field studies 
may leave gaps in knowledge such as the length of the adult flight 
period, differential effects of sexual dimorphism, methods of 
oviposition, duration of egg development, presence of diapause 
and hatching success. Laboratory setups such as aerated contain-
ers, flow-through systems or field-based mesocosms are useful 
as they are able to mimic natural conditions in a contained and 
controlled environment (e.g. Humpesch, 1979; Sweeney and 
Vannote, 1981; Sweeney et al., 1986; Peckarsky and Cowan, 
1991; Giberson and Rosenberg, 1992; Reynolds and Benke, 2005; 
Harper and Peckarsky, 2006; Kendrick and Benstead, 2013). 
In such setups the effect of certain environmental factors, that 
under natural conditions co-vary, may instead be decoupled, 
independently controlled and experimentally tested (e.g. pho-
toperiod, temperature regime, flow rate, oxygen saturation). 
Generally, more modern systems now allow for either constant 
or fluctuating thermal regimes with a high level of precision and 
control over a number of variables (e.g. Clements et al., 2013). 
While these systems may never truly replicate natural conditions 
to the same degree of efficiency, they do allow for the compli-
cated interaction of variables affecting the life histories of aquatic 
insects to be broken down and studied separately. For example, 
laboratory studies have been used to explore the effect of tem-
perature on voltinism – especially using organisms that have 
naturally fast growth rates and short development times (e.g. 
Chironomidae: Reynolds and Benke, 2005).

Timing and duration of emergence

Emergence is the transition from the aquatic nymphal stage 
to the terrestrial sub-imago during which the nymphal skin is 
shed, normally at the water’s surface or on surrounding riparian 
vegetation (Brittain, 1982). Emergence is influenced by variations 
in the growth rate of the pre-emergent nymphal population and 
is an integral component of life cycle strategies (Brittain, 1990). 
Irregular timing of emergence in species, owing to altered ther-
mal regimes in rivers, may be lethal to aquatic insects, because 
(i) they may emerge in conditions potentially unsuitable for their 
survival (i.e. asynchronous emergence with resources such as 
food/prey) (Nebeker, 1971a; Raddum, 1985) and (ii) males might 
emerge and die before females emerge, preventing successful 
mating (Nebeker, 1971a). As such, many aquatic insects are 
adapted so that seasonal changes in temperature act as cues for 
the timing of emergence. The timing and duration of emergence 
involves responses mainly to water temperature, often interact-
ing with combinations of photoperiod, dissolved oxygen and 
flow (Nebeker, 1971a; Ward and Stanford, 1982). 

The sublethal effects of temperature on the timing and dura-
tion of emergence are particularly well suited to laboratory studies. 
Immature nymphs of aquatic insects may easily be collected from 
the field, acclimated and then transferred to aerated containers, 
flow-through systems or field-based mesocosms, in which they 
may be reared to maturity under different experimental condi-
tions. Water temperatures may be manipulated using either static 
or fluctuating thermal regimes to determine the effect of tempera-
ture on the timing and duration of emergence. Laboratory studies 
of this sort have been able to demonstrate that (i) specific thresh-
old temperatures may initiate emergence, (ii) emergence may be 
hastened or delayed by adjusting experimental water temperatures, 
(iii) emergence period is extended in warmer conditions, (iv) larger 
size and higher fecundity at emergence is caused by cooler temper-
atures, (v) adult longevity is increased when nymphs are reared at 
cooler temperatures, and (vi) the time between emergence of males 
and females is increased with increasing temperature (Nebeker, 
1971a, b; Brittain, 1976; Sweeney, 1978; Sweeney and Vannote, 
1981; Ward and Stanford, 1982; Giberson and Rosenberg, 1992; 
Harper and Peckarsky, 2006).

Field studies have also been undertaken to investigate tim-
ing and duration of emergence as well as total development time 
and voltinism (Ross-Gillespie, 2014). By selecting rivers that 
naturally vary with respect to water temperature and flow, Ross-
Gillespie (2014) showed that all of these life history attributes are 
influenced by thermal and hydrological regimes. Data collected 
from emergence traps in field studies and from laboratory stud-
ies of mayflies have revealed both diel (largely crepuscular) and 
seasonal patterns (occurring mostly during the warmer months) 
of emergence, as well as latitudinal and altitudinal differences 
resulting in the shifting of the timing of emergence (onset of 
emergence delayed with increasing altitude and higher latitudes, 
most likely associated with cooler water temperatures) (Brittain, 
1982; Ward and Stanford, 1982; Campbell, 1986). Where several 
species co-exist (e.g. congeneric species), peak emergences are 
separated in time, with either synchronised or dispersed pat-
terns exhibited (Brittain, 1982; Ward and Stanford, 1982).

Effects on reproductive success and fitness 

Fecundity

Adult female body size of aquatic insects has been found to 
be directly related to fecundity, with females of larger species 
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producing more eggs (Brittain, 1982; Ward and Stanford, 
1982). As water temperature has been shown to affect 
growth rates of nymphs and final body size at emergence, 
the trade-off between growth and sexual development under 
environmental time constraints has evolutionary and eco-
logical implications on fecundity (Ward and Stanford, 1982). 
Numerous laboratory studies have investigated the sublethal 
effects of water temperature on the fecundity of reared female 
aquatic insect nymphs in conjunction with the size or fitness 
of reared adults at emergence (e.g. Sweeney and Vannote, 
1981; Giberson and Rosenberg, 1992; Elliott, 2013). For these 
experiments the general approach is to collect immature 
nymphs from the field and rear them to maturity in systems 
similar to those used to obtain information on growth rates, 
life cycle development times as well as voltinism. As sper-
matogenesis and oogenesis are completed in the final nymphal 
instar of most aquatic insects (Britain, 1982), upon emergence, 
females are collected, their body size measurements recorded, 
after which they are dissected in order to count the number of 
eggs produced. 

Rates and success of egg development and hatching

Water temperature is the principal factor determining the 
rate of development of eggs, hatching success, the length of 
the hatch period, as well as the induction and termination 
of egg diapause in aquatic insects (Brittain, 1982; Ward and 
Stanford, 1982; Gillooly and Dodson, 2000). It has been sug-
gested that specific threshold or critical temperatures deter-
mine the onset and breaking of egg diapause (i.e. an egg rest-
ing stage during which no development occurs – a mechanism 
for evading unfavourable or stressful conditions) in certain 
aquatic insect species and in some cases hatching success as 
well as the length of the egg incubation period (Elliott, 1972; 
Humpesch, 1980; Lillehammer et al., 1989). Critical thermal 
limits for egg development provide an indication of the range 
of temperatures suitable for the growth of juvenile nymphs, 
which is useful for determining the effects of water tempera-
ture on recruitment. 

As aquatic insect eggs do not require nutrition for devel-
opment (Pritchard et al., 1996), generally have low oxygen 
requirements, and are unaffected by photoperiod or flow 
velocities (Brittain, 1982), they are ideal subjects for simple, 
cost-effective laboratory experiments. Eggs to be used in these 
experiments are usually collected from mated, gravid adult 
organisms captured in the field by means of a hand net or aspi-
rator. By submerging containers in pools used as oviposition 
sites, eggs may also be directly collected from the field, where 
mated females might be difficult to obtain. Gravid females of 
some mayfly and stonefly species, when captured and placed in 
vials or jars containing some water, freely oviposit eggs , while 
many caddisfly adults readily mate and oviposit under labora-
tory conditions (Brittain and Lillehammer, 1987; Elliott, 1988; 
Ross-Gillespie, 2014), providing a simple means of obtaining 
eggs. Where these approaches are not possible or prove to be 
unsuccessful, eggs may be obtained through artificial ferti-
lisation techniques, which have proved successful for many 
species of mayfly that do not readily mate in the laboratory 
(Humpesch, 1980; Brittain, 1982; Sweeney and Vannote, 1987; 
Ross-Gillespie, 2014). Once eggs have been collected they may 
be placed in water-filled containers (e.g. petri dishes, beakers 
or tanks) and held at either constant or fluctuating tempera-
ture regimes. Eggs are monitored daily for signs of develop-
ment, diapause and hatching. Upon hatching the number of 

successfully hatched eggs at each temperature is recorded along 
with the length of the hatch period and ultimately the egg 
development period (normally the length of time measured 
as degree days to median hatch) is calculated (Pritchard et al., 
1996). Degree days, i.e., the cumulative temperature experi-
enced by an organism above a certain threshold temperature 
for development, allow one to calculate, for example, the 
probability of egg hatching under different thermal conditions 
(Rivers-Moore et al., 2013b). 

Experiments of this sort have generated a large amount 
of literature and have provided valuable insights into the 
ecological and evolutionary strategies adopted by a range of 
aquatic organisms to deal with different thermal environ-
ments, including aquatic insects (Brittain, 1976; Humpesch, 
1980; Brittain, 1982; Elliott, 1984, 1988, 2009; Sweeney and 
Vannote, 1984; Brittain and Lillehammer, 1987; Jackson and 
Sweeney, 1995; Pritchard et al., 1996; Reynolds and Benke, 
2005; Elliott, 2013; Ross-Gillespie, 2014), amphipods (Sutcliffe 
and Carrick, 1981; Pöckl and Timischl, 1990) and fish (Brungs, 
1971; Fonds, 1979; Mitchell, 1989; Crisp, 1990; Semmens and 
Swearer, 2011). Some common trends observed in these studies, 
particularly those focused on aquatic insects, have been that 
lower water temperatures generally result in longer egg devel-
opment times, while shorter development times are observed 
at warmer temperatures and also under fluctuating or diel 
thermal regimes when compared to constant temperatures 
(Humpesch, 1978; Ward and Stanford, 1982). As such, the 
relationship between temperature and time to hatch in many 
species of Ephemeroptera and Plecoptera may be described by 
the power law (Brittain, 1982; Lillehammer et al., 1989). When 
thermal conditions are at an optimum the hatching period of 
eggs is generally short; however highly variable hatch durations 
have been observed both within and among species (Ward 
and Stanford, 1982). Extended hatch durations have also been 
observed in laboratory conditions (Clifford et al., 1979) and 
at higher temperatures in conjunction with lower hatch suc-
cess (Ross-Gillespie, 2014), which may suggest that extended 
hatches are an adaptive response to unpredictable conditions 
(Ward and Stanford, 1982). Interestingly, hatching success is 
also not necessarily highest at temperatures which permit the 
fastest development of eggs (Ward and Stanford, 1982, Ross-
Gillespie, 2014). Information on thermal limits for egg develop-
ment in aquatic organisms is still limited and originates largely 
from northern Hemisphere studies on aquatic insects, namely 
the Ephemeroptera, Plecoptera and Trichoptera (Britain, 1982), 
with few examples from the southern Hemisphere (e.g. Brittain, 
1991, 1995; Dallas and Rivers-Moore, 2012, Ross-Gillespie, 
2014). Egg diapause (i.e. a period of suspended activity bro-
ken by an appropriate environmental cue) has been observed 
over both summer and winter periods for several species of 
aquatic insect (Ephemeroptera, Plecoptera, Simulidae: Harper 
and Hynes, 1970; Hynes, 1970; Brittain, 1975; Pritchard et al., 
1996) and Crustaceans (Cladocera: Frey, 1982; Yurista, 1997; 
Slusarczyk and Rybicka, 2011). 

Behavioural effects

Behavioural responses that allow ectotherms to exploit the 
thermal heterogeneity of their environments, in order to 
maximise biochemical and physiological processes or enhance 
survivability, thereby indirectly influencing reproductive and 
ecological efficiency, are termed thermoregulatory behavioural 
responses (Hutchison and Maness, 1979; Gerritsen, 1982; 
Hutchison and Spriestersbach, 1986). Mechanisms that control 
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behavioural thermoregulation in ectotherms are more sensitive 
to temperature change than mechanisms controlling physiolog-
ical adjustments (Cabanac, 1979). Studies on thermoregulatory 
behaviour have primarily been undertaken on fish and reptiles 
with comparatively fewer studies conducted on amphibians 
and aquatic invertebrates (Hutchison and Spriestersbach, 
1986; Dallas, 2008). Locomotion, through migration and drift, 
is commonly associated with thermoregulatory behaviour 
in aquatic ectotherms because in the aquatic environment 
most organisms have to move significantly further in order to 
accomplish a change in body temperature compared to ter-
restrial organisms (e.g. lizards), which are better able to control 
rates of heat gain or loss through changes in posture or orienta-
tion (Hutchison and Spriestersbach, 1986). 

Aquatic organisms, particularly fish, are known to utilise 
thermal refugia and often thermoregulate by migrating to 
areas of cooler water when surrounding water temperatures are 
outside of their preferred range or exceed their upper tolerances 
(e.g. Torgersen et al., 1999; Elliott, 2000; Ebersole et al., 2001; 
Gardner et al., 2003). Fish possess acute temperature discrimi-
nation powers and use behaviour to avoid or rapidly escape 
thermally hostile areas, if thermally favourable environments 
are available (Beitinger et al., 2000). The habitat occupied by a 
particular species or age class, in the field, has been shown to 
change seasonally and even daily in response to the location 
of preferred temperatures (Coutant, 1987). Thermal refugia 
protect biotic communities from extreme thermal disturbances 
and are most numerous in intact riverine systems with riparian 
vegetation and groundwater (Torgersen et al., 1999). Undercut 
banks and overhanging vegetation also increase the availabil-
ity of less thermally stressful habitats (Bell, 2006). Coldwater 
patches, which may be 3°C to 10°C lower than instream tem-
peratures, are normally associated with lateral seeps, cold side-
channels, floodplain tail seeps, floodplain seeps and stratified 
pools (Mosley, 1983; Ebersole et al., 2001).

For many aquatic insects the hyporheic habitat (particu-
larly coarse substrate, such as cobbles) provides a refuge from 
fast velocities (boundary layer effect), low temperatures (geo-
thermal groundwater inputs, buffered water temperatures, 
protection from underwater ice) and also high temperatures 
(from cooler groundwater exchanges, lack of incoming solar 
radiation) temperature extremes (Hynes, 1970; Brown et al., 
2005; Caissie, 2006). When compared to surface water tem-
peratures, intragravel temperatures within the substratum 
have been found to be lower during summer and higher over 
winter (Caissie and Giberson, 2003; Brown et al., 2005). As a 
result many aquatic insects may simply migrate down into the 
substrate a relatively short distance to gain shelter from adverse 
conditions (Hynes, 1970). Similarly, the temperature differ-
ential in the substratum may influence fish habitat conditions 
(Crisp, 1990) and the development of salmonid eggs (Combs, 
1965; Alderdice and Velsen, 1978; Beer and Anderson, 2001). 
Aquatic crustacean zooplankton also exhibit thermoregulatory 
behaviour in the form of migration, where they swim upwards 
in response to sudden increases in temperature and sink in 
response to decreases in temperature (Barber, 1961; Gerritsen, 
1982). Similar responses in zooplankton have been found as 
a result of diel, seasonal, and interannual changes as well as 
thermal stratification in lakes and dams (Gorski and Dodson, 
1996; Ryan and Dodson, 1998; Burks et al., 2002; Beklioglu et 
al., 2008; Schalau et al., 2008; Ziarek et al., 2011). The frequency 
of upward swimming has been found to be proportional to the 
rate of change of temperature (Gerritsen, 1982). Phototactic 
responses may however complicate matters, where cool animals 

exhibit positive phototactic reactions and swim upwards 
towards a light source and warm organisms exhibit a nega-
tive phototactic reaction swimming away from a light source 
(Gerritsen, 1982). The amplitude of diel patterns of invertebrate 
drift may also be increased at warmer temperatures (Waters, 
1972; Keller, 1975; Brittain and Eikeland, 1988), while cata-
strophic drift responses may result from drastic and sudden 
temperature changes (Ward and Stanford, 1982).

A popular method of investigating thermoregulatory 
behaviour in fish, crustaceans and aquatic insects in the labora-
tory is through the use of either vertical or horizontal thermal 
gradient tanks (Cherry and Cairns, 1982; Boubée et al., 1991; 
Richardson et al., 1994). This technique involves the establish-
ment of a temperature gradient (either horizontal or vertical) 
that is then used to evaluate, by determining movement into 
different thermal zones and the time spent in these zones, 
the temperatures preferred or avoided by an organism. The 
method facilitates the determination of the effects of gradual 
temperature changes and allows ontogenetic shifts in tempera-
ture preferences to be calculated. For example, Boubée et al. 
(1991), using a thermal gradient tank, showed experimentally 
that the final preferred temperature of Galaxias maculates, a 
resident fish in New Zealand, is about 20°C and that tempera-
tures above 29.5°C were totally avoided. These laboratory setups 
have been successfully used for adult Coleoptera (Ybarrondo, 
1995), larval Odonata (Leggott and Pritchard, 1986; Baker 
and Feltmate, 1989), larval Tipulidae (Kavaliers, 1981), 
Palaemonidae (Hernández-Rodríguez and Bückle-Ramirez, 
1997), Gastropoda (Kavaliers, 1980, Rossetti et al., 1989; Gerald 
and Spezzano, 2005), hatchling and yearly freshwater turtles 
(Bury et al., 2000) and fish (Boubée et al., 1991; Hernández-
Rodríguez et al., 2002).

Ecological effects

Water temperatures may influence patterns of species rich-
ness, composition, densities and distribution of aquatic organ-
isms, both within and among aquatic habitats (Coutant, 1977; 
Brittain, 1982; Ward and Stanford, 1982; Downes et al., 1993; 
Wichert and Lin, 1996; Jacobsen et al., 1997; Dallas and Rivers-
Moore, 2012; Rivers-Moore et al., 2013b). Temperature is the 
abiotic variable most closely related to changes in latitude 
and altitude which have both, through several studies from 
tropical and temperate regions, been found to impact aquatic 
community structure and species diversity (Hynes, 1970; 
Kownacka and Kownacki, 1972; Stout and Vandermeer, 1975; 
Ormerod et al., 1994; Jacobsen et al., 1997; Jacobsen, 2004). 
Diversity and species richness have been found to increase with 
increasing water temperature and decrease with altitude and 
latitude (Brittain, 1982; Jacobsen et al., 1997). Estimates suggest 
that tropical lowland streams have on average two to four-
fold higher species richness than temperate lowland streams 
(Jacobsen et al., 1997). Faster rates of evolution and speciation 
as a result of shorter generation times and elevated mutation 
rates at increased temperatures have been proposed by Rohde 
(1992) to explain the greater levels of diversity observed at 
warmer temperatures and thus further elucidate the potential 
causes for the latitudinal gradients observed in biodiversity. 
Several studies also illustrate a zonation pattern of aquatic 
organisms along the longitudinal profile of rivers concomitant 
with thermal differences along the profile (e.g. Brittain, 1975; 
Ward, 1985; Jacobsen et al., 2010). These studies, however, 
have been thought to obscure the actual effect of temperature 
(Jacobsen et al., 1997) because habitat type (which has a major 
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properties (Warren and Davis, 1971). Some of the most insightful 
studies relating the effect of water temperature to aquatic species 
richness, composition, density and distribution have been those 
where (i) hypolimnetic flows are released from dams and reser-
voirs upstream (e.g. Raddum, 1985; Brittain and Saltveit, 1989; 
Brittain, 1991; Gooseff et al., 2005), (ii) heated effluents enter the 
channel (e.g. Langford and Aston, 1970; Langford, 1990), (iii) 
whole in-channel manipulations have been undertaken (e.g. 
Hogg and Williams, 1996), (iv) similar natural systems with 
differing thermal regimes have been contrasted (e.g. Minshall et 
al., 1985; Jacobsen et al., 1997; Castella et al., 2001; Haidekker and 
Hering, 2008; Friberg et al., 2009), and (v) long-term data sets 
have revealed evidence for effects of global climate change (e.g. 
Durance and Ormerod, 2007).

Methods for estimating sublethal effects

Numerous laboratory setups and experimental procedures 
have been used to measure sublethal effects of temperature on 
aquatic organisms. Choice of laboratory setup largely depends 
on the question(s) being asked and available resources, with 
some setups well suited for the investigation of several response 
variables, either simultaneously or in sequence (Table 1). For 
instance aerated containers and flow-through systems may be 
used to determine growth rates, size at emergence, total devel-
opment time, voltinism, emergence patterns and fecundity, 
thus incorporating response variables from three major effect 
categories, viz., physiological/metabolic, phenological and 

effect on species composition, richness, and density) changes 
along the profile (Minshall, 1985; Jacobsen and Friberg, 1997; 
Voelz and McArthur, 2000). 

Ward and Stanford (1982), citing several other authors, sug-
gest that unpredictable thermal environments, particularly those 
which experience a wide annual temperature range, enhance spe-
cies diversity in several ways: (i) such conditions are suitable for 
wide range of organisms (cold stenotherms, warm stenotherms 
as well as eurytherms), (ii) a greater number of species may 
co-exist especially when temporal segregation occurs as a result 
of differential thermal responses during different periods of the 
annual thermal cycle, (iii) species may avoid competition during 
different parts of the year through niche segregation as a result 
of the specific thermal limits for the induction and termination 
of dormancy that have evolved at both high and low temperature 
extremes and also temporal separation of resource use as well 
as emergence times, (iv) wide daily variation in temperature 
may provide a greater range of thermal optima and allow for 
increased species packing (see MacArthur, 1970 and Case, 1981), 
despite the fact that suboptimal conditions would be encoun-
tered by each species for a part of the diel cycle.

Investigations into the ecological effects of sublethal tem-
peratures on aquatic organisms have generally been undertaken 
in field studies where the entire community is considered. This 
is largely because of the complexities involved in ensuring that 
artificial systems afford the same opportunities for colonisation, 
succession and diversity of aquatic organisms that is offered by 
natural systems along with similar stable chemical and physical 

TABLE 2
Summary of experimental setups, time frame and equipment costing that may be used to determine sublethal effects of 

water temperature on aquatic organisms

Major effects Response variables Laboratory setup Time frame† Cost‡

Physiological and 
metabolic

Growth rates AC, W, F, M Medium-Long Low-Medium

Size at emergence AC, W, F, M Medium-Long Low-Medium

Secondary productivity M, A, N Long High*

Respiration R Short Medium

Phenological

Total development time AC, W, F, M Long Low-Medium

Voltinism and flexibility AC, W, F, M Long Low-Medium

Timing and duration of 
emergence

AC, W, F, M Medium-Long Low-Medium

Reproductive success and 
fitness

Fecundity WC, AC, W, F Medium Low-Medium

Juvenile survival and 
recruitment

WC, AC, F Medium Low

Rates of egg development 
and hatch success

WC, W Medium Low

Behavioural
Migration T Short Low-Medium

Drift T, A, N Short-Medium Medium-High*

Ecological

Species richness M, A, N Long Low-High*

Species composition M, A, N Long Low-High*

Density M, A, N Long Low-High*

Distribution patterns M, A, N Long Low-High*

WC: water-filled containers, AC: aerated containers, W: water bath, F: flow-through systems, R: respiration chambers, M: mesocosms, T: thermal 
gradient tank, A: artificial stream, N: natural stream
*High cost only where mesocosms and artificial streams are used
†Times frames are roughly estimated as: short (hours; days); medium (days; weeks); long (months; years) – variable, dependent on organisms to be 
studied, acclimation time and desired duration
‡Cost ratings in US$ (estimates) are: low (50–500); medium (500–1000); high (>1 000) – costs are estimated under the assumption that major labo-
ratory infrastructure exists (e.g. constant environment rooms)
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reproductive success. The response variables from each major 
effect category, their associated experimental setup, experi-
mental timeframe and a rough costing have been summarised 
in Table 2. Key aspects that encompass all laboratory setups 
include: (i) use of chemically inert substance for construction 
of experimental setup; (ii) use of stream water or dechlorin-
ated mains water that has been circulated in a reservoir for 
approximately 24 h; (iii) use of a constant environment (tem-
perature control) room that has either a constant temperature 
or a fluctuating temperature set to reflect ambient temperature 
and full-spectrum lighting controlled through a time switch to 
allow for an adjustable or constant photoperiod; and (iv) supply 
of a standardised food source for longer duration experiments. 

Water-filled containers

These are commonly used for assessing growth rates, devel-
opment times and hatching success of aquatic insect eggs, 
and juvenile survival rates of newly-hatched organisms (e.g. 
Reynolds and Benke, 2005; Brittain, 1976). They are amongst 
the simplest and cheapest of laboratory setups and involve the 
use of containers of any shape or size that are filled with water. 
The water in the container is not required to be aerated, but 
a portion of water is replaced manually with fresh water on a 
daily basis. The lack of aeration limits the utility of these con-
tainers for experiments.

Aerated containers

This laboratory setup comprises a set of containers filled 
with water that is aerated, using pumps or compressed air 
via airstones, to maintain the oxygen concentration at satu-
ration levels. Normally experiments include a control (at 
ambient stream temperature) and several containers that are 
heated using calibrated aquarium heaters to provide constant 
temperatures above the control. These systems are generally 
self-contained, and for longer duration experiments (> 10 
days) water needs to be manually replaced with fresh water to 
maintain stability and quality of water and prevent accumula-
tion of nutrients. Filtration canisters may be used to assist in 
the maintenance of a stable environment. The use of aerated 
containers provides a simple, cost effective experimental setup 
for investigating a number of sublethal effects on individu-
als. They are most appropriate for experiments of ≤ 10 days as 
accumulation of nutrients becomes a problem thereafter, even 
with replacement of water.

Water baths

Water baths (volumes range from 1.5 ℓ to 43 ℓ) allow for 
thermostatically-controlled water temperature with a high 
degree of precision, often via a digital interface or computer-
based program that enables full customisation of heating rates. 
Generally, baths have operating temperatures from ambient 
temperature to 95°C, while more advanced baths also have 
cooling capabilities with built-in temperature logging capa-
bilities. The interior of the baths is usually constructed from 
seamless sheets of stainless steel which are corrosion-resistant 
and chemically inert and thus do not affect aquatic organisms. 
Many newer baths control temperature uniformity by circula-
tion of water using built-in pumps, which concurrently serve 
to aerate the water. Water baths allow for temperatures: (i) to 
be increased and decreased at constant rates, (ii) kept constant 

or (iii) programmed to fluctuate according to a user-defined 
profile. Water baths are more expensive than aerated contain-
ers, with greater precision attained when heating and cooling is 
undertaken. For stable thermal experiments, aerated containers 
with heaters provide a more cost-effective option. 

Flow-through systems

These are relatively small channels, flumes or containers of var-
ying sizes that receive controlled and constant in-flows of fresh 
water that is then circulated and aerated by motorised paddle 
wheels or pumps (e.g. Warren and Davis, 1971; Oldmeadow et 
al., 2010; Ditsche-Kuru et al., 2012). Flow rates in the system are 
precisely regulated to mimic natural stream velocities at con-
stant rates. Overflow pipes or overshot weirs allow excess water 
to drain out of the system, thus maintaining water depth and 
velocity whilst also allowing for the removal of nutrients and 
ensuring water remains chemically stable. Additional aeration 
by means of compressed air via airstones may be used to ensure 
oxygen content remains close to saturation. Flow-through sys-
tems represent a more realistic river environment but are more 
complex and costly to setup. 

Respiration chambers

Respiration chambers specially designed for aquatic organisms 
are widely available and come in a range of sizes (from 0.5 mℓ 
to 30 ℓ) for measuring respiration in individual eggs, embryos, 
larvae and mature adult fish. Chambers are constructed from 
chemically inert materials that do not act as oxygen sinks and 
provide airtight seals (e.g. borosilicate glass, perspex). Chambers 
are designed to allow oxygen probes to be hermetically mounted 
or inserted inside the chamber to continuously log or allow 
for manual measurements of oxygen concentration at regular 
intervals (Golubkov et al., 1992). Respiration is recorded as other 
environmental factors are adjusted (normally temperature and 
or photoperiod). Simple systems have water circulated by means 
of a magnetic stirrer, where a false bottom or piece of nylon mesh 
protects the study organism from the stirrer and provides an 
attachment surface (Verberk et al., 2013). Some advanced designs 
allow for respiration to be measured in swimming fish, by creat-
ing a flow-through system using a pump which is built into the 
design (Jones et al., 2007; Kieffer and Cooke, 2009; Pettersson 
et al., 2010). Certain challenges exist with regard to the use of 
respiration chambers in the laboratory, however, such as mim-
icking natural flow conditions and velocities as well as hyporheic 
processes and exchanges, maintaining natural nutrient levels, 
and controlling for excess heat generated from pumps (Rostgaard 
and Jacobsen, 2005; Bott, 2006).

Mesocosms

Mesocosms are water-filled or aerated containers, flow-through 
systems or sets of either of these that are maintained outdoors 
under semi-natural conditions (Caquet et al., 2000). The term 
semi-natural is used because certain environmental variables 
may be controlled, while others cannot. For instance several 
mesocosms have comprised flow-through systems setup inside 
greenhouses where air/water temperature and humidity are 
controlled, but photoperiod remains natural (e.g. Harper and 
Peckarsky, 2006; Clements et al., 2013). Mesocosms gener-
ally tend to be on a larger scale (Harper and Peckarsky, 2006; 
Wesner, 2010; Greig et al., 2012) than other systems housed in 
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laboratories; however, they may be used for the same experi-
mental investigations (e.g. growth, development times, emer-
gence timing and length of life cycle, voltinism flexibility). 
Mesocosms utilise ambient conditions, with costs dependent on 
experimental setup. A secure experimental location is critical 
for the success of this option. 

Thermal gradient tanks

Thermal gradient tanks may be: (i) rectangular chambers that 
produce a horizontal thermal gradient, (ii) cylindrical chambers 
that produce a vertical thermal gradient, (iii) electronic shuttle-
boxes that produce a horizontal gradient controlled by the move-
ment of organisms, or (iv) annular chambers (e.g. Ybarrondo, 
1995; Hernández-Rodríguez et al., 2002; Myrick et al., 2004; 
Marek and Gvoždík 2012; Reiser et al., 2013). Horizontal tanks 
provide uniform light intensity, shallow water depths (<3 cm) 
to prevent the effects of thermal stratification (Myrick et al., 
2004), and a uniform bottom/attachment surface onto which 
organisms may attach and move (e.g. aquatic insects) or walk on 
(e.g. newts). A typical and fairly simple horizontal gradient tank 
that generated a stable linear thermal gradient of 10°C to 50°C 
(Ybarrondo, 1995) comprised a shallow, rectangular plastic tank, 
with heating and cooling elements at either end. Normoxic con-
ditions and circulation of water were provided by means of air 
bubbling fixtures buried in the gravel substrate along the length 
of the tank. Vertical gradient tanks are well suited to studies on 
free-swimming organisms (e.g. zooplankton, fish) and are able to 
investigate the effects of thermal stratification, deep waters, and 
negligible currents. However, vertical gradient tanks may suffer 
from interacting effects such as disproportionate light intensi-
ties and water pressures, especially in larger systems (Myrick et 
al., 2004). Similarly, shuttleboxes, while they allow the organism 
to regulate the temperature in a horizontal gradient, may incur 
problems with being shallow and with features that provide 
different amounts of perceived cover to organisms (Myrick et 
al., 2004). Thermal gradient tanks range in complexity and cost, 
although simple horizontal ones are relatively cost-effective, 
portable and easy to use. 

Artificial streams

Artificial streams which replicate natural stream conditions, 
where certain variables may still be controlled, represent 
some of the most expensive and elaborate experimental setups 
(Warren and Davis, 1971). Artificial stream channels are com-
monly dug adjacent to natural streams from which they receive 
constant regulated inflows of water. Water channelled to the 
artificial stream may be heated, chemically treated or enriched, 
depending on the experimental focus. The streams may be 
designed to provide combinations of habitat types (e.g. riffle-
pool-runs), to have a constant known gradient, be lined such 
that the effects of natural/artificial groundwater inflows may 
either be included or excluded, and have specific substrate type 
and size. Aquatic invertebrates naturally colonise these sys-
tems from the adjacent natural stream or through drift, or are 
manually stocked (Hogg and Williams, 1996). These systems 
are sampled regularly, as would natural streams, over long time 
frames, to investigate questions related to ecological effects of 
temperature (e.g. species richness, composition, density and 
distribution, and also secondary productivity, growth rates, 
voltinism, fecundity, and emergence). Artificial streams are 
commonly linked to institutions that have a dedicated river 
system(s) or experimental area(s) that provides a secure long-
term facility for undertaking experiments.

CONCLUSIONS

This paper provides an overview of the sublethal effects of 
temperature on aquatic organisms and outlines methods for 
estimating these effects. The choice of laboratory or field setup 
ultimately depends on the objectives of the study, logistical 
constraints and available finances. While laboratory stud-
ies have been questioned as to their usefulness and potential 
for application to complex natural conditions (Hynes, 1970; 
Hogg and Williams, 1996), they can provide a suite of valuable 
information relating to specific variables. Further, it is often the 
combination of laboratory and field studies that yields more 
information than either method alone (Hynes, 1970; Brittain, 
1982). Even the simplest designs may produce results, which 
when interpreted in the context of natural systems, provide 
useful information on the biotic responses of aquatic organisms 
to changes in water temperature. Experiments that provide 
insight into the thermal requirements of individual organ-
isms allow one to make predictions about likely consequences 
of thermal changes. For example, investigations into hatch-
ing temperatures for species, which may easily be undertaken 
using water-filled containers (non-aerated or aerated), may be 
used in conjunction with estimates of thermal limits, to pre-
dict range shifts in response to increases in water temperature 
(Rivers-Moore et al., 2013b). Upper thermal limits, which are 
easily estimated using aerated containers and aquarium heaters 
set to provide a minimum of 5 thermal environments, may be 
used to calculate biological temperature thresholds and for the 
setting of defendable, biologically-relevant water temperature 
guidelines for lotic systems (Dallas and Ketley, 2011; Dallas and 
Rivers-Moore, 2012; Dallas et al. 2015). Field studies investigat-
ing life-history information provide valuable insight into cur-
rent and likely future impact of changes in water temperature 
on individuals and communities (Ross-Gillespie, 2014). These 
examples of simple laboratory experiments and field surveys 
undertaken in South Africa over the last 5 years, highlight the 
enormous value in undertaking studies on thermal responses. 
Furthermore, this knowledge contributes to the development 
of water temperature guidelines for lotic systems, which is vital 
for the management and protection of aquatic ecosystems in 
the face of ongoing anthropogenic impacts on river systems, 
including those resulting from global climate change.
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