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Quantifying sediment load is vital for aquatic and riverine biota and has been the subject of various 
environmental studies since sediment plays a key role in maintaining ecological integrity, river morphology 
and agricultural productivity. However, predicting sediment concentration in rivers is difficult because of 
the non-linear relationships of flow rates, geophysical characteristics and sediment loads. It is thus very 
important to propose suitable statistical methods which can provide fast, accurate and robust prediction of 
suspended sediment concentration (SSC) for management guidance. In this study, we developed coupled 
models of discrete wavelet transform (DWT) with adaptive neuro-fuzzy inference system (ANFIS), named 
DWT-ANFIS, and principal component analysis (PCA) with ANFIS, named PCA-ANFIS, for SSC time-series 
modeling. The coupled models and single ANFIS model were trained and tested using long-term daily SSC 
and river discharge which were measured on the Schuylkill and Iowa Rivers in the United States. The findings 
showed that the PCA-ANFIS performed better than the single ANFIS and the coupled DWT-ANFIS. Further 
applications of the PCA-ANFIS should be considered for simulation and prediction of other indicators relating 
to weather, water resources, and the environment.
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INTRODUCTION

Monitoring and predicting suspended sediment concentration (SSC) in river systems is important for 
ecological conservation, sustainable livelihood protection, and aquatic and agricultural production 
(Madsen et al., 2001; Naiman et al., 2010; Dang et al., 2018). River erosion and sediment pollution, 
among the topmost environmental problems related to sediment fluxes, are also of concern to water 
resource engineers and policy makers. Nevertheless, the sediment concentration varies largely 
with time and space and is driven by turbulent currents (Walling, 1983). The recent development 
of manmade structures like reservoirs strongly obstructs the natural pattern of sediment transport 
(Kondolf et al., 2018). Sediment modeling is thus pivotal for guiding management.

In the past, numerous studies of sediment processes have been conducted by using numerical 
modeling and statistical methods. Coupled hydrodynamic and sediment models have been used to 
assess the large-scale impact of water infrastructure development and sealevel rise on sedimentation 
(Paiva et al., 2011; Dang, 2018). Process-based hydrodynamic models could also simulate the diffusion 
of sediment concentration in three-dimensional space based on different physical equations, but to a 
much smaller extent (Wu et al., 2000). However, because there are many obscure parameters related 
to sediment transport, the governing equations of these process-based hydrodynamic models might 
not fully represent the complex processes. Besides process-based modeling, time-series models (e.g., 
auto-regressive integrated moving average and multi-linear regression) could also be predicted by 
using sediment concentration. Nevertheless, the mentioned models are linear models which require 
stationary data and which are unable to capture the non-linearity of processes.

Simple statistical methods were then replaced by more sophisticated machine-learning approaches 
because of their capability in capturing non-linear behaviour (e.g. Choi and Seo, 2018; Valero and 
Bung, 2018). Among these techniques, artificial neural networks (ANN) and ANFIS have successfully 
been employed in various fields, especially water resources (Rajaee, 2011). Zhu et al. (2007) applied 
the ANN model to simulate monthly suspended sediment fluxes in the Longchuanjiang River basin. 
The results exhibited that the ANN model could simulate the target variable with fairly good accuracy, 
considering all environmental factors and a dataset of the previous 3 months’ sediment concentrations. 
To predict suspended sediment load (SSL), the butterfly optimization algorithm (BOA) and the 
genetic algorithm (GA) were incorporated with machine learning models by Fadaee et al. (2020). They 
concluded that the BOA is superior to the GA in improving the performance of the learning process. 
Kisi et al. (2009) stated that the adaptive neuro-fuzzy (ANF) has the best performance compared to 
other models in suspended sediment prediction. The performance of these AI-based methods could 
then be further enhanced with pre-processing methods to reduce noise in the input data.

Due to the stochastic nature of hydrodynamic processes, data pre-processing might allow machine-
learning models to handle non-stationary data adequately. Recently, many scholars have paid 
attention to combined methods, such as the hybrid wavelet-ANN and hybrid wavelet-ANFIS models 
(Kaveh et al., 2017). These hybrid models have a good performance when employed individually 
in water resources and environmental management problems. For drought prediction, Kim and 
Valdés (2003) applied the wavelet-ANN model in Mexico, while this method was also proposed for 
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a case study in Italy (Cannas et al., 2005). The coupled wavelet-
autoregressive models were applied to predict annual rainfall 
by Tantanee et al. (2005). Improvement of the ANN model 
performance by using continuous and discrete wavelet transform 
were presented by Cannas et al. (2006). Zounemat-Kermani et al. 
(2018) used different data-driven methods (ANN, ANFIS), and 
wavelet neural network to evaluate the incipient motion velocity 
of bed sediments. The results show that the wavelet neural 
network model yields better results compared to other methods. 
These methods presented that the ANN model combined with 
pre-processing methods can improve significantly improve model 
performance. To predict suspended sediment concentration, the 
hybrid wavelet-neuro fuzzy (NF) model was applied to a case 
study in the USA by Rajaee (2010). The results indicated that the 
proposed model had a better performance than other models. 
The PCA method is one of the popular data-processing methods 
that was used to convert the possibly correlated data into linearly 
uncorrelated data (principal components). In so doing, this 
method helped to reduce data dimensions. To predict SSL and 
BL, Zounemat-Kermani et al. (2020) indicated that the integrative 
ML model has outstanding performance compared to standalone 
ANFIS and SVR.

In this paper, the hybrid models PCA, DWT and ANFIS were 
applied to predict SSC. The purpose of combining the PCA and 
ANFIS model is to enhance the accuracy of SSC prediction by 
removing redundant data. Statistical performance indeces were 
used to evaluate and compare the model performance of the 
PCA-ANFIS, DWT-ANFIS and traditional ANFIS. There are 
several published studies that have proposed and applied a hybrid 
of DWT-ANFIS or PCA-ANFIS in several fields like prediction 
of SSC (Bajirao et al., 2021; Alizadeh et al., 2017; Olyaie et al., 
2015; Ehteram et al., 2019), groundwater level prediction (Seifi 
et al., 2020; Nourani et al., 2016), rainfall downscaling (Pham et 
al., 2019), and biochemical oxygen demand (Solgi et al., 2017). 
Therefore, the single application of DWT-ANFIS or PCA-ANFIS 
for SSC is not a new topic in the field of environment or hydrology. 
However, there is limited research that has been conducted to 
compare the performance of ANFIS model coupled with DWT 
and PCA for SSC prediction. This study intends to fill this gap and 

enrich the literature available to researchers considering to adopt 
such models for future studies.

Hydrometry stations and data analysis

The historical data were obtained from the gauging station in 
Schuylkill River (latitude: 40° 01’ 41” N and longitude: 75° 13’ 
44” W and basin area: 4 739 km2, and the Iowa River (latitude: 
41° 10’ 48” N and longitude: 91° 10’ 57” W and basin area:  
32 372 km2) and presented in Fig. 1 (US Geological Survey 
(USGS)). The historical data were used for training (calibrate) and 
testing (validate) the proposed models.

Daily river discharge (Qt) and SSCt of gauging stations were 
obtained from the USGS website system (http://co.water.usgs.
gov/sediment/seddatabase.cfm). For the Schuylkill River station, 
83% of the data (1 January 1949 – 31 December 1952) and the 
remaining 17% of the data (1 January 1954 – 31 December 1955) 
were used for training and testing, respectively. For the Iowa River 
station, 5 years’ data (January 1, 1979 – December 31, 1983) and 
1 year’s data (1 January 1984 – 31 December 1984) were used for 
the training and testing model, respectively. Figure 2 provides the 
historical daily discharge and SSC data.

The correlation between river discharge (Q) and SSC was 
computed to gain an appropriate input pattern for the proposed 
models. Table 1 shows that the correlation coefficients between 
SSCt and river discharge time-series at the Iowa River station 
were very low; however, they were high at the Schuylkill River 
station. This table also shows higher correlations between SSCt , 
SSCt-1, SSCt-2, and SSCt-3 in the Iowa River in comparison to the 
Schuylkill River. The input variables have different scales, units 
and ranges. To eliminate their dimensions and treat these equally 
for each variable, all input variables were pre-processed by scaling 
them by the following formula:

                                        
x x x

x xin
i imin

i imin

�
�
�max  

(1)

where xin : the rescaled value of variable i; xi : the original value; 
ximin : minimum of variable i; and ximax : the maximum of variable i.

Figure 1. Locations of the Schuylkill and Iowa Rivers in the United States
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METHODS

The single ANFIS model

The ANFIS model could be trained without the requirement 
for expert input due to the standard design of the ANFIS model 
(Jang, 1993). The introduction of a basic ANFIS is shown in Fig. 3. 
The network structure of the ANFIS model consists of nodes 
presented by a node function and links. Each node was presented 
by a node function with fixed or adjustable parameters.

In a neural network, training phase processing aims to find the 
suitable value of parameters that fit the training data. The back-

propagation method is well-known as one of the basic learning 
rules. This method tries to seek the minimum measure of error 
which presents as a sum of squared differences of outputs and 
desired outputs of the network (Kaya et al., 2002). Sugeno’s 
system is one of three types of fuzzy inference systems. This 
system is the most commonly used, with a crisp output and is 
less time consuming (Takagi and Sugeno, 1993). There are two 
fuzzy IF/THEN rules in first-order Sugeno’s system, which can be 
presented as (Sayed et al., 2003):

          Rule 1: If  is  and y  is  then x A B f p x q y r1 1 1 1 1 1, � � �   (2)

            Rule 2: If  is  and y  is  then x A B f p x q y r2 2 2 2 2 2, � � �  (3)

In Layer 1, each node produced membership grades of an input 
variable. The output Oi

1 of the ith node could be calculated as the 
equation below by assuming that the membership function is a 
generalized bell function:
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(4)

where x is input to node I; and {ai, ci, Ni} are adaptable variables.

Figure 2.  Measured discharge and suspended sediment concentrationat the Schuylkill (upper) and Iowa (lower) River Stations

Table 1. The correlation coefficients between observed  suspended sediment concentration and discharge at Schuylkill River and Iowa River Stations

Time series Schuylkill River Station Iowa River Station

Training set Testing set All datasets Training set Testing set All datasets

Qt 0.8006 0.5602 0.7929 0.2782 0.3966 0.2916

Qt-1 0.4389 0.2715 0.4373 0.2100 0.3218 0.2228

Qt-2 0.2156 0.1054 0.2219 0.1574 0.2509 0.1679

Qt-3 0.1639 0.0096 0.1721 0.1281 0.2104 0.1371

SSCt-1 0.5378 0.5706 0.5372 0.7632 0.7502 0.7620

SSCt-2 0.2400 0.3671 0.2443 0.5162 0.4476 0.5086

SSCt-3 0.2012 0.1687 0.2072 0.4007 0.3355 0.3937

Figure 3. ANFIS architecture of the Sugeno fuzzy model for two 
inputs with two rules
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Layer 2: Every node multiplied the incoming signals.

                          O w x y ii i Ai Bi
2 1 2� � � �� �( ) ( ), ,  (5)

Layer 3: The ith node was calculated by the normalized firing 
strengths as:

                               O w w
w w

ii i
i3

1 2

1 2� �
�

�, ,  (6)

Layer 4: Node i calculated the contribution of the ith rule towards 
the model output and was computed by the following node 
function:

                             O w f w p x q y ri i i i i i i
4 � � � �( )  (7)

where, w   − is the output of Layer 3, and {pi, qi, ri} are parameters set 
which are referred to as consequent parameters.

Layer 5: The single node calculated the overall output of the 
ANFIS model (Jang and Sun, 1995).

                                  O w f w f
wi i i i

i i i

i i

5 � � �
�
�

 (8)

Discrete wavelet transform (DWT) analysis

The DWT approach is one of the time-dependent spectral analyses. 
Wavelet transform is a robust approach to capture the feature of a 
time-series and expose localized events in a non-stationary data 
series (Gupta and Gupta, 2007). When a time-series is considered 
as a linear combination of some base functions, WT was similar to 
the Fourier transform. The base functions were translations and 
dilation of one function called the mother wavelet.

In this study, the main concepts of the DWT approach are briefly 
presented, the readers can refer to Labat et al. (2000) for more 
detailed information on the theory and applications of WT. WT 
performed to decompose the target time-series data into a group 
of functions (Cohen and Kovacevic, 1996):

                                � �j k
j

j k
jx x k,

/
,( ) ( )� �2 22  (9)

where, Ψj,k(x) is calculated from a mother wavelet Ψ(x) which is 
dilated by j and translated by k, Ψ(x) must satisfy the following 
condition:
                                          �( )x dx �� 0  (10)

The DW function of a signal f (x) can be calculated by the 
following equation: 
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where, cj,k is the approximate coefficient of a signal. The Ψ(x) is 
produced from the scaling function ϕ(x) as:

                             � �( ) ( ) ( )x h n x n� ��2 20
 (13)

                              
�( ) ( ) ( )x h n x n� ��2 1 �

 
(14)

where, h1(n) = (–1)n h0(1 – n)

Principal component analysis (PCA)

PCA mathematically relies upon an eigenvector decomposition 
of the covariance matrix or correlation matrix of the process 
variables. The non-iterative partial least squares (NIPALS) 
algorithm was the first application for computing the principal 
components sequentially when there is a large number of 
variables. The number of major components offers an adequate 
explanation of the data and could be determined using several 
methods (Jackson, 1991). PCA could be used to decompose the 
data matrix X as the outer products and a residual matrix E:

                           X t p t p t p ET T
k k

T� � � � �1 1 2 2
...  (15)

where k must be less than or equal to the smaller dimension 
of X, the ti vectors are identified as main component scores 
and include the relationship of the samples. The pi vectors are 
identified as loading and include information on the relationship 
of the variables. In the PCA decomposition, the pi vectors are 
eigenvectors of the covariance matrix, i.e., for each pi:
                                       cov( )X p pi i i� �  (16)

where λi is the eigenvalue associated with the eigenvector pi. 
The ti form an orthogonal set ( )t t i ji

T
j � �0 for , while the pi are 

orthogonal ( , )p p i j p p i ji
T

j i
T

j� � � �0 1 for  for . The xi and ti 
and P pair satisfy the equation below:

                                              x P ti i i=  (17)

The score vector ti was defined by the linear combination of P and 
x. ti is the projection of X onto pi. li is represented by the pi and is 
a measure of the amount of variance.

Because the pi is in descending order of λi, the first pair captured 
the most information, and each subsequent pair captured the 
largest possible amount of variance at that step. The variance 
of each pair could be accumulated and compared with a given 
constant to identify the important components of all the pairs. 
The data could be sufficiently defined using fewer parameters than 
the original variables by using this PCA approach. This approach 
avoids loss of significant information and the issue of collinearity 
in the data. Once the number of important components is selected 
that adequately represents the original dataset, a regression can be 
performed to improve an inferential model. The selected important 
component scores were used in the PCA algorithm instead of using 
the original variables as inputs to the inferential model.

The DWT-ANFIS model

Q and SSC time-series are obtained to apply DWT-ANFIS. To 
develop the DWT-ANFIS model, first measured Q and SSC time-
series were decomposed to multi-frequency time-series by DWT. 
The river discharge time-series were decomposed as Qd1(t), Qd2 
(t), …, Qdi (t); Q(ta) and SSC time-series were decomposed as 
SSCd1(t), SSCd2 (t), …, SSCdi (t), SSC(ta). The di is the decomposed 
time-series at ith level and a is the approximate time-series.

Then the decomposed Q and SSC time-series at different scales 
were inputted to the ANFIS method to predict the 1-day-ahead 
SSC. The mother wavelets were used to decompose the observed Q 
and SSC time-series at two decomposition levels (1 and 2). As an 
example, the Level 2 decomposition of the Q signal which yields 3 
sub-signals (approximation at Level 2, and details 1, and 2) by coif1 
wavelet are presented in Fig. 4 for the Schuylkill River Station.

The PCA-ANFIS model

In this study, the 1-day-ahead SSC was predicted by using the 
hybrid PCA-ANFIS approach, which is a combination of the 
PCA and the adaptive neuro-fuzzy inference system (ANFIS) 
model. The transparent modeling of fuzzy logic was promoted by 
incorporating the neuro-fuzzy model and the pattern recognition 
capabilities of neural networks. To emulate a complex (nonlinear) 
and multi-dimensional mapping function, a mean of training a 
family of membership functions was offered in the form of the 
neuro-fuzzy approach. The PCA algorithm was combined with the 
inferential model architecture to deal with the multi-collinearity 
problem within the process data.

Due to a complex of interrelated variables, the central idea of PCA 
was applied to decrease the dimensionality of a dataset; however, 
this model could retain the diversity of variables in the original 
dataset (Jolliffe, 1986). This was gained by transforming to a new 
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Figure 4. Approximation and detail sub-signals of discharge in Schuylkill River using Coif1 mother wavelet

set of variables which were presented as principal components 
(PCs). The new set of variables were uncorrelated and ordered. 
The first few preserve almost all of the variation in the original 
variables. When using the PCA initialization model, the process 
data could be maintained sufficiently with fewer parameters 
than the original variables. To develop a correlation model, the 
regression could be performed once the number of principal 
components was selected to sufficiently represent the features 
of the original dataset. The selected principal components from 
the PCA algorithm were used instead of the original variables as 

input data for ANFIS. The PCA-ANFIS model used in this study 
is illustrated in Fig. 5.

Evaluation criteria and application of the proposed 
models

Evaluation criteria

For model evaluation, the correlation coefficient has been 
indicated to be an inappropriate index (Legates and McCabe, 
1999). Coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE) are the evaluation 
criteria which have been frequently used by many scholars to 
evaluate their poposed models (Pham et al., 2021; Mohammadi et 
al., 2020; Costache et al., 2020; Abba et al., 2020; Pham et al., 2019). 
In this study, the performance of ANFIS models was evaluated by 
using R2, RMSE, and MAE. The models have a good performance 
when the value of R2 is close to 1 and RMSE and MAE are close to 
0. The performance evaluation criteria R2, RMSE, and MAE could 
be calculated with the following equations:

                         

R SSC SSC
SSC SSC

i
n

isi iobs

i
n

iobs imean

2 1
2

1
21� �

�
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n
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where SSC(obs) is measured SSC, SSC(si) is simulated SSC using the 
ANFIS models, and n is the length of the data series.Figure 5. Structure of the PCA-ANFIS model
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Application of the ANFIS model

The ANFIS model is considered as an effective tool to handle 
nonlinear and noisy data when the relationships among 
physical processes or relationships between predictors (e.g., 
discharge, antecedent suspended sediment) and target output 
(e.g., suspended sediment, sediment load) are not completely 
understood. Rajaee et al. (2009) indicated that the ANFIS model 
could be applied to model the complex systems. Different input 
values (i.e., Q and SSC) were considered in order to predict the 
1-day-ahead SSC in this study. The statistical analysis is shown 
in Table 1. The variables at time t−3 were ignored due to its low 
correlation; the combinations which were used in this study are 
presented below:

Combination 1: Q at time t (Qt), SSC at t−1 (SSCt-1)

Combination 2: Q at time t, t−1 and t−2 (Qt, Qt-1 and Qt-2),  
SSC at t−1 and t−2 (SSCt-1, SSCt-2)

Combination 3: Q at time t−1 (Qt-1), SSC at t−1 (SSCt-1)

Combination 4: Q at time t−1 and t−2 (Qt-1 and Qt-2),  
SSC at t−1 and t−2 (SSCt-1 and SSCt-2)

Combination 5: Q at time t and t−1(Qt, Qt-1), SSC at t−1 and  
t−2 (SSCt-1, SSCt-2)

Combination 6: Q at time t (Qt), SSC at t−1 and t−2 (SSCt-1, SSCt-2)

A fuzzy inference model of the Sugeno type was applied for the 
ANFIS models (Jang et al., 1997). By using optimization algorithms, 
the membership function (MF) parameters were adjusted to suit a 
given input-output set. Each rule comprises many parameters of 
MF and each variable might contain several values in the ANFIS 
model. For instance, if each variable contains 3 rules and each rule 
contains 2 parameters, there were 6n (i.e., n multiply 3 multiply 2)  
parameters for the determination in Layer 1 in Fig. 3. These MFs 
were trained by the ANFIS model using the training data. In 
Layer 2, these rules produce 2n neurons, and there are 2n × (n + 1)  
undetermined parameters within the defuzzification process in 
Layer 4. Selecting the number of MFs for each input reflects the 
complication of choosing parameters of the ANFIS model. In this 
study, different ANFIS models were studied to predict the SSC 
values in the rivers. For each input, three Gaussian membership 
functions have the best performance in all these models.

Application of the DWT-ANFIS model

In this study, the DWT-ANFIS technique which employs DWT was 
used to improve the performance of a single ANFIS. To this end, 
the decomposed SSC and Q are used as the input to the ANFIS to 
predict the SSC 1 day ahead. Selection of a proper mother wavelet 
is a crucial part, the analysis is then performed using the shifted 
and dilated version of this wavelet. The second important part is to 
find the optimum number of decomposition levels. Rajaee (2011) 
indicated that high decomposition levels lead to a large number 
of input data with the complex nonlinear relationship in the ANN 
model, which may result in a decrease in the model performance 
of DWT-ANN. The non-linear relationship between input and 
target variables can be trained and fitted by the training data, but 
there are errors in predicting future values that could be created 
in each parameter. Subsequently, the performance of the model 
is decreased because of the net errors. So, Decomposition Level 
2 should be considered as a suitable level while choosing more 
decomposition levels (more than 2 levels) may result in decreasing 
the performance of the prediction model (e.g., ANN). As a result, 
different types of mother wavelets with two different decomposition 
levels were chosen to find the most efficient model in this study. To 
this aim, the Q and SSC data are decomposed to one and two levels 
by different mother wavelets consisting of Daubechies-2 (db2) 
wavelet (Mallat, 1989), sym5, bior4.4, dmeyer, and coif1 wavelet.

Application of the PCA-ANFIS model

As mentioned previously, the main aim of this study was to propose 
and evaluate the ability of the PCA-ANFIS for SSC prediction 1 
day ahead. To this aim, the original SSC and Q data were inputted 
to the PCA box and the outputs were considered as inputs for the 
ANFIS model. The components of lesser significance can be ignored. 
After some insignificant components were removed, the final input 
samples have fewer dimensions than the original data. For instance, 
a dataset has n dimensions, and so n eigenvectors and eigenvalues 
can be calculated, but only the first p eigenvectors are insignificant 
components and are chosen. Therefore, the final input has only p 
dimensions. Since the original time-series data were two dimensional 
(Qt, and SSCt), the PCA box produced two components in order of 
significance. In the current study, we also investigated the impact of 
removing the second component which had lesser significance. As an 
example, the principal component analysis of Q and SSC time-series 
for the Iowa River Station is plotted in Fig. 6.

Figure 6. PCA of Q and SSC time series for the Iowa River Station
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RESULTS AND DISCUSSION

Suspended sediment simulation by the ANFIS model

The ANFIS models were used for SSC simulation using all the 
different input combinations. The results are listed in Table 2.

For the Iowa River, the ANFIS model had the best performance 
for Combination 5, where the highest value of R2 = 0.7275 and 
the lowest RMSE = 144.371 (mg/L) and MAE = 59.680 (mg/L) 
were observed, followed by Combinations 6, 4, 3, 2, 1. For the 
Schuylkill River, the values of R2, RMSE, and MAE implied that 
the results are more complex compared to that of Iowa River, and 
showed that the best performances were for Combinations 5, 6, 
and 2, respectively. The ANFIS model, in this case, performed 
better than the ANN, NF, MLR and SRC models discussed in 
Rajaee et al. (2009) (R2 ranging from 0.0002 to 0.697).

Suspended sediment simulation by the DWT-ANFIS model

In Table 3, the performance of the DWT-ANFIS model is shown. 
As can be seen from this table, for the Schuylkill River, the model 
using Bior 4.4 as mother wavelet provides the best performance 
at Decomposition Level 2. For this river, the DWT-ANFIS model 
improves the values of R2, RMSE, and MAE from 0.7186, 26.639 
(mg/L), and 14.575 (mg/L) to 0.8443, 15.828 (mg/L), and 7.8211 
(mg/L) in comparison to the best ANFIS models, respectively. At 
the Iowa River Station, the DWT-ANFIS configurations provided 
the best efficiency for Bior 4.4 mother wavelet at Decomposition 
Level 1, where it had the highest value of R2 = 0.6613 and the 
lowest RMSE = 161.054 (mg/L) and MAE = 68.882 (mg/L). 

However, the results obtained for this river station indicated that 
the DWT-ANFIS model was not always able to improve the model 
performance. In this research, the results obtained by the PCA-
ANFIS model were compared to those obtained by DWT-ANFIS 
and single ANFIS, for Schuylkill and Iowa Rivers, respectively.

Suspended sediment simulation by the PCA-ANFIS model

Table 4 presents the prediction results performed by PCA-ANFIS 
model for SSC prediction at the Schuylkill and Iowa River Stations.

According to Table 4, in both rivers, the PCA-ANFIS 
configuration provided the best efficiency when there was no 
reduction in dimension sizes. As expected, by ignoring the second 
component the accuracy of the model was reduced. However, 
the model performance was still better than the ANFIS and 
DWT-ANFIS models because the second component has less 
significance in comparison to the first component. As seen in 
this table, at the Schuylkill River Station, the PCA-ANFIS model 
improved the best values of R2, RMSE, and MAE from 0.8443, 
15.828 (mg/L), and 7.8211 (mg/L) to 0.9776, 5.7642 (mg/L), and 
3.2592 (mg/L), respectively. For the Iowa River Station, it could be 
observed that the best values of R2, RMSE, and MAE were 0.7275,  
144.371 (mg/L), and 59.680 (mg/L), respectively, while these were 
0.9898, 27.4903 (mg/L), and 13.8879 (mg/L) for the PCA-ANFIS 
model. The temporal variations of the observed and predicted SSC 
using DWT-ANFIS and PCA-ANFIS methods for the Schuylkill 
River are shown in Fig. 7. In Fig. 8, the temporal variations of the 
observed and predicted SSC using single ANFIS and PCA-ANFIS 
models for the Iowa River are plotted.

Table 2. Performances of the models for SSC estimation using ANFIS

Combination Schuylkill River Station Iowa River Station

R2 RMSE (mg/L) MAE (mg/L) R2 RMSE (mg/L) MAE (mg/L)

1 0.5981 27.900 17.446 0.5274 236.765 120.485

2 0.6603 38.133 14.575 0.5257 211.710 76.465

3 0.3530 36.555 20.925 0.5796 176.692 74.596

4 0.3273 41.945 25.271 0.6071 170.773 70.853

5 0.7186 41.407 16.146 0.7275 144.371 59.680

6 0.5975 26.639 17.211 0.6535 169.676 71.714

Table 3. Performances of the models for SSC estimation using wavelet-ANFIS

Mother wavelet type Decomposition 
level

Schuylkill River Station Iowa River Station

R2 RMSE (mg/L) MAE (mg/L) R2 RMSE (mg/L) MAE (mg/L)

Dmeyr 1
2

0.7513
0.8061

19.393
19.899

9.8523
9.8241

0.5537
0.4484

218.405
271.730

88.527
92.860

Sym 5 1
2

0.4926
0.6547

29.772
28.443

13.2269
8.7719

0.3408
0.0890

322.947
496.828

101.638
131.971

Db 2 1
2

0.6574
0.8100

23.023
16.684

12.2547
8.4075

0.5698
0.2677

186.551
632.932

73.475
119.191

Coif 1 1
2

0.6963
0.7272

21.440
28.616

13.798
9.3022

0.5426
0.3936

245.122
568.025

76.822
130.487

Bior 4.4 1
2

0.7121
0.8443

21.222
15.828

12.389
7.8211

0.6613
0.4028

161.054
315.699

68.882
96.430

Table 4. Performances of the models for SSC estimation using PCA-ANFIS

Model Schuylkill River Station Iowa River Station

R2 RMSE (mg/L) MAE (mg/L) R2 RMSE (mg/L) MAE (mg/L)

PCA-ANFIS 0.9776
0.9210

5.7642
10.5956

3.2592
7.9248

  0.9898
  0.9413

27.4903
72.2830

13.8879
51.8339
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Modeling comparison and discussion

As seen in Figs 7 and 8, for both river stations, the PCA-ANFIS 
model comes up with better results for SSC prediction than those 
estimated by the single ANFIS and DWT-ANFIS models. The ANFIS 
and DWT-ANFIS methods almost over-predict measured values in 
peaks. Meanwhile, the PCA-ANFIS model shows a good agreement 
with the observed time series, even for peaks. The magnitude of the 
low, medium and high SSC predictions by the PCA-ANFIS model 

is closer to the observed values in comparison with the other two 
models. Additionally, the results of the PCA-ANFIS model for both 
river stations are closer to the 45° straight lines in the scatter plots, 
compared to the other models. It can be said that the single ANFIS 
and DWT-ANFIS models are comparable in terms of prediction 
accuracy whereas the PCA-ANFIS model performed remarkably 
better than those. Since PCA reduces dimensional sizes of training 
data, the efficiency of PCA-ANFIS was also higher.

Figure 7. SSC predicted by the (DWT) wavelet-ANFIS and PCA-ANFIS models for the Schuylkill River

Figure 8. SSC predicted by the ANFIS and PCA-ANFIS models for the Iowa River
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Figure 9a and Figure 9b illustrate measured and estimated 
(using wavelet ANFIS and PCA-ANFIS) cumulative suspended 
sediment load for the testing period at the Schuylkill and Iowa 
River Stations, respectively.

In Fig. 9a, both the PCA-ANFIS and DWT-ANFIS models over-
predict the measured SSL values for Schuylkill River. However, 
the PCA-ANFIS model shows better performance. The measured 
cumulative SSL in the verification period is over 66 x 103 tons. 
The PCA-ANFIS and DWT-ANFIS models overestimate SSL by 
nearly 72 and 80 x 103 tons, respectively. It can be observed that 
at the Iowa River Station, the PCA-ANFIS model overestimates 
observed SSL while SSL is underestimated by the ANFIS method. 
In this river, the measured cumulative SSL is 3 051 x 103 tons. The 
PCA-ANFIS and ANFIS models predict an amount of 3 115 and 
3 017 x 103 tons, respectively. At first glance, it can be said that 
ANFIS model predicts the cumulative SSL better than the PCA-
ANFIS model.

In reservoir management and river engineering, the computation 
of cumulative SSL is a necessary step (Walling, 1983; Kondolf, 
2018). Likewise, in designing and operating canals, dams, dikes, 
embankments and diversions, the accuracy of SSL calculation 
is crucial. The calculation of annual SSL is a priority because 
it is important for decision making. The cumulative SSL was 
predicted well by PCA-ANFIS in this study. When numerical 
studies have high computational cost, data-driven approaches, 
such as modeling frameworks, could be used to replace the 
physically based models. The applicability of using both PCA-
ANFIS and DWT-ANFIS to obtain dynamic interaction and 
feedback associated with other flow variables, such as velocity or 
water depth, remains a prospective research question. Finally, the 
use of the statistical methods cannot replicate extrapolated input 
beyond the range of data used for training. This would limit the 
application of this model to study future changes, so traditional 
modelling methods are still necessary.

CONCLUSIONS

The single model (i.e., ANFIS) and the hybrid models (i.e., PCA-
ANFIS and DWT-ANFIS) were examined for predicting SSC in 
the Schuylkill and Iowa rivers. The construction of empirically 
based hydrological models is time-consuming and laborious, 
while intelligent computing tools can develop fast and accurate 
models. Pre-processing approaches then help to provide better 
prediction by removing noise from hydrological time-series data. 
It can be concluded that the PCA-ANFIS model outperformed the 
single ANFIS and the DWT-ANFIS models in all the goodness-
of-fit statistics used in this study (i.e., R2, RMSE and MAE). 
The DWT-ANFIS model took advantage of wavelet analysis to 
improve model performance, but the performance of PCA-ANFIS 

was even better than that of DWT-ANFIS. We suggest using this 
model for simulation of time series for weather, water resources, 
and other environmental factors.
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